Chapter 25: Problem 17
Show that for resistors connected in series, it is always the highest resistance that dissipates the most power, while for resistors connected in parallel, it is always the lowest resistance that dissipates the most power.
Chapter 25: Problem 17
Show that for resistors connected in series, it is always the highest resistance that dissipates the most power, while for resistors connected in parallel, it is always the lowest resistance that dissipates the most power.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe most common material used for sandpaper, silicon carbide, is also widely used in electrical applications. One common device is a tubular resistor made of a special grade of silicon carbide called carborundum. A particular carborundum resistor (see the figure) consists of a thick-walled cylindrical shell (a pipe) of inner radius \(a=\) \(1.50 \mathrm{~cm},\) outer radius \(b=2.50 \mathrm{~cm},\) and length \(L=60.0 \mathrm{~cm} .\) The resistance of this carborundum resistor at \(20 .{ }^{\circ} \mathrm{C}\) is \(1.00 \Omega\). a) Calculate the resistivity of carborundum at room temperature. Compare this to the resistivities of the most commonly used conductors (copper, aluminum, and silver). b) Carborundum has a high temperature coefficient of resistivity: \(\alpha=2.14 \cdot 10^{-3} \mathrm{~K}^{-1} .\) If, in a particular application, the carborundum resistor heats up to \(300 .{ }^{\circ} \mathrm{C},\) what is the percentage change in its resistance between room temperature \(\left(20 .{ }^{\circ} \mathrm{C}\right)\) and this operating temperature?
What is (a) the conductance and (b) the radius of a \(3.5-\mathrm{m}\) -long iron heating element for a \(110-\mathrm{V}, 1500-\mathrm{W}\) heater?
If the current through a resistor is increased by a factor of \(2,\) how does this affect the power that is dissipated? a) It decreases by a factor of 4 . b) It increases by a factor of 2 . c) It decreases by a factor of 8 . d) It increases by a factor of 4 .
In an emergency, you need to run a radio that uses \(30.0 \mathrm{~W}\) of power when attached to a \(10.0-\mathrm{V}\) power supply. The only power supply you have access to provides \(25.0 \mathrm{kV}\) but you do have a large number of \(25.0-\Omega\) resistors. If you want the power to the radio to be as close as possible to \(30.0 \mathrm{~W}\), how many resistors should you use, and how should they be connected (in series or in parallel)?
A battery has a potential difference of \(14.50 \mathrm{~V}\) when it is not connected in a circuit. When a \(17.91-\Omega\) resistor is connected across the battery, the potential difference of the battery drops to \(12.68 \mathrm{~V}\). What is the internal resistance of the battery?
What do you think about this solution?
We value your feedback to improve our textbook solutions.