Chapter 24: Problem 13
When working on a piece of equipment, electricians and electronics technicians sometimes attach a grounding wire to the equipment even after turning the device off and unplugging it. Why would they do this?
Chapter 24: Problem 13
When working on a piece of equipment, electricians and electronics technicians sometimes attach a grounding wire to the equipment even after turning the device off and unplugging it. Why would they do this?
All the tools & learning materials you need for study success - in one app.
Get started for freeA parallel plate capacitor has square plates of side \(L=\) \(10.0 \mathrm{~cm}\) and a distance \(d=1.00 \mathrm{~cm}\) between the plates. Of the space between the plates, \(\frac{1}{3}\) is filled with a dielectric with dielectric constant \(\kappa_{1}=20.0 .\) The remaining \(\frac{4}{5}\) of the space is filled with a different dielectric with \(\kappa_{2}=5.00 .\) Find the capacitance of the capacitor.
You have an electric device containing a \(10.0-\mu \mathrm{F}\) capacitor, but an application requires an \(18.0-\mu \mathrm{F}\) capacitor. What modification can you make to your device to increase its capacitance to \(18.0-\mu \mathrm{F} ?\)
A quantum mechanical device known as the Josephson junction consists of two overlapping layers of superconducting metal (for example, aluminum at \(1.00 \mathrm{~K}\) ) separated by \(20.0 \mathrm{nm}\) of aluminum oxide, which has a dielectric constant of \(9.1 .\) If this device has an area of \(100 . \mu \mathrm{m}^{2}\) and a parallel plate configuration, estimate its capacitance.
A 4.00 -pF parallel plate capacitor has a potential difference of \(10.0 \mathrm{~V}\) across it. The plates are \(3.00 \mathrm{~mm}\) apart, and the space between them contains air. a) What is the charge on the capacitor? b) How much energy is stored in the capacitor? c) What is the area of the plates? d) What would the capacitance of this capacitor be if the space between the plates were filled with polystyrene?
Two circular metal plates of radius \(0.61 \mathrm{~m}\) and thickness \(7.1 \mathrm{~mm}\) are used in a parallel plate capacitor. A gap of 2.1 mm is left between the plates, and half of the space (a semicircle) between the plates is filled with a dielectric for which \(\kappa=11.1\) and the other half is filled with air. What is the capacitance of this capacitor?
What do you think about this solution?
We value your feedback to improve our textbook solutions.