Chapter 24: Problem 12
Does it take more work to separate the plates of a charged parallel plate capacitor while it remains connected to the charging battery or after it has been disconnected from the charging battery?
Chapter 24: Problem 12
Does it take more work to separate the plates of a charged parallel plate capacitor while it remains connected to the charging battery or after it has been disconnected from the charging battery?
All the tools & learning materials you need for study success - in one app.
Get started for freeA \(1.00-\mu \mathrm{F}\) capacitor charged to \(50.0 \mathrm{~V}\) and a \(2.00-\mu \mathrm{F}\) capacitor charged to \(20.0 \mathrm{~V}\) are connected, with the positive plate of each connected to the negative plate of the other. What is the final charge on the \(1.00-\mu \mathrm{F}\) capacitor?
The capacitor in an automatic external defibrillator is charged to \(7.5 \mathrm{kV}\) and stores \(2400 \mathrm{~J}\) of energy. What is its capacitance?
A \(4.00 \cdot 10^{3}-n F\) parallel plate capacitor is connected to a \(12.0-\mathrm{V}\) battery and charged. a) What is the charge \(Q\) on the positive plate of the capacitor? b) What is the electric potential energy stored in the capacitor? The \(4.00 \cdot 10^{3}-\mathrm{nF}\) capacitor is then disconnected from the \(12.0-\mathrm{V}\) battery and used to charge three uncharged capacitors, a \(100 .-n F\) capacitor, a \(200 .-\mathrm{nF}\) capacitor, and a \(300 .-\mathrm{nF}\) capacitor, connected in series. c) After charging, what is the potential difference across each of the four capacitors? d) How much of the electrical energy stored in the \(4.00 \cdot 10^{3}-\mathrm{nF}\) capacitor was transferred to the other three capacitors?
A parallel plate capacitor of capacitance \(C\) has plates of area \(A\) with distance \(d\) between them. When the capacitor is connected to a battery of potential difference \(V\), it has a charge of magnitude \(Q\) on its plates. While the capacitor is connected to the battery, the distance between the plates is decreased by a factor of \(3 .\) The magnitude of the charge on the plates and the capacitance are then a) \(\frac{1}{3} Q\) and \(\frac{1}{3} C\). c) \(3 Q\) and \(3 C\). b) \(\frac{1}{3} Q\) and \(3 C\). d) \(3 Q\) and \(\frac{1}{3} C\).
A capacitor consists of two parallel plates, but one of them can move relative to the other as shown in the figure. Air fills the space between the plates, and the capacitance is \(32.0 \mathrm{pF}\) when the separation between plates is \(d=0.500 \mathrm{~cm} .\) a) A battery with potential difference \(V=9.0 \mathrm{~V}\) is connected to the plates. What is the charge distribution, \(\sigma\), on the left plate? What are the capacitance, \(C^{\prime},\) and charge distribution, \(\sigma^{\prime},\) when \(d\) is changed to \(0.250 \mathrm{~cm} ?\) b) With \(d=0.500 \mathrm{~cm}\), the battery is disconnected from the plates. The plates are then moved so that \(d=0.250 \mathrm{~cm}\) What is the potential difference \(V^{\prime},\) between the plates?
What do you think about this solution?
We value your feedback to improve our textbook solutions.