Chapter 23: Problem 80
A point charge \(Q\) is placed a distance \(R\) from the center of a conducting sphere of radius \(a,\) with \(R>a\) (the point charge is outside the sphere). The sphere is grounded, that is, connected to a distant, unlimited source and/or sink of charge at zero potential. (Neither the distant ground nor the connection directly affects the electric field in the vicinity of the charge and sphere.) As a result, the sphere acquires a charge opposite in sign to \(Q\), and the point charge experiences an attractive force toward the sphere. a) Remarkably, the electric field outside the sphere is the same as would be produced by the point charge \(Q\) plus an imaginary mirror-image point charge \(q\), with magnitude and location that make the set of points corresponding to the surface of the sphere an equipotential of potential zero. That is, the imaginary point charge produces the same field contribution outside the sphere as the actual surface charge on the sphere. Calculate the value and location of \(q\). (Hint: By symmetry, \(q\) must lie somewhere on the axis that passes through the center of the sphere and the location of \(Q .)\) b) Calculate the force exerted on point charge \(Q\) and directed toward the sphere, in terms of the original quantities \(Q, R,\) and \(a\) c) Determine the actual nonuniform surface charge distribution on the conducting sphere.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.