Chapter 23: Problem 18
An electron moves away from a proton. Describe how the potential it encounters changes. Describe how its potential energy is changing.
Chapter 23: Problem 18
An electron moves away from a proton. Describe how the potential it encounters changes. Describe how its potential energy is changing.
All the tools & learning materials you need for study success - in one app.
Get started for freeFour identical point charges \((+1.61 \mathrm{nC})\) are placed at the corners of a rectangle, which measures \(3.00 \mathrm{~m}\) by \(5.00 \mathrm{~m}\). If the electric potential is taken to be zero at infinity, what is the potential at the geometric center of this rectangle?
A particle with a charge of \(+5.0 \mu C\) is released from rest at a point on the \(x\) -axis, where \(x=0.10 \mathrm{~m}\). It begins to move as a result of the presence of a \(+9.0-\mu C\) charge that remains fixed at the origin. What is the kinetic energy of the particle at the instant it passes the point \(x=0.20 \mathrm{~m} ?\)
A classroom Van de Graaff generator accumulates a charge of \(1.00 \cdot 10^{-6} \mathrm{C}\) on its spherical conductor, which has a radius of \(10.0 \mathrm{~cm}\) and stands on an insulating column. Neglecting the effects of the generator base or any other objects or fields, find the potential at the surface of the sphere. Assume that the potential is zero at infinity.
How much work would be done by an electric field in moving a proton from a point at a potential of \(+180 . \mathrm{V}\) to a point at a potential of \(-60.0 \mathrm{~V} ?\)
Two fixed point charges are on the \(x\) -axis. A charge of \(-3.00 \mathrm{mC}\) is located at \(x=+2.00 \mathrm{~m}\) and a charge of \(+5.00 \mathrm{mC}\) is located at \(x=-4.00 \mathrm{~m}\) a) Find the electric potential, \(V(x),\) for an arbitrary point on the \(x\) -axis. b) At what position(s) on the \(x\) -axis is \(V(x)=0 ?\) c) Find \(E(x)\) for an arbitrary point on the \(x\) -axis.
What do you think about this solution?
We value your feedback to improve our textbook solutions.