Chapter 22: Problem 82
A proton enters the gap between a pair of metal plates (an electrostatic separator) that produces a uniform, vertical electric field between them. Ignore the effect of gravity on the proton. a) Assuming that the length of the plates is \(15.0 \mathrm{~cm}\), and that the proton will approach the plates at a speed of \(15.0 \mathrm{~km} / \mathrm{s}\) what electric field strength should the plates be designed to provide, if the proton must be deflected vertically by \(1.50 \cdot 10^{-3} \mathrm{rad} ?\) b) What speed does the proton have after exiting the electric field? c) Suppose the proton is one in a beam of protons that has been contaminated with positively charged kaons, particles whose mass is \(494 \mathrm{MeV} / \mathrm{c}^{2}\left(8.81 \cdot 10^{-28} \mathrm{~kg}\right)\), compared to the mass of the proton, which is \(938 \mathrm{MeV} / \mathrm{c}^{2}\left(1.67 \cdot 10^{-27} \mathrm{~kg}\right)\) The kaons have \(+1 e\) charge, just like the protons. If the electrostatic separator is designed to give the protons a deflection of \(1.20 \cdot 10^{-3} \mathrm{rad}\), what deflection will kaons with the same momentum as the protons experience?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.