Chapter 22: Problem 59
A solid sphere of radius \(R\) has a nonuniform charge distribution \(\rho=A r^{2},\) where \(A\) is a constant. Determine the total charge, \(Q\), within the volume of the sphere.
Chapter 22: Problem 59
A solid sphere of radius \(R\) has a nonuniform charge distribution \(\rho=A r^{2},\) where \(A\) is a constant. Determine the total charge, \(Q\), within the volume of the sphere.
All the tools & learning materials you need for study success - in one app.
Get started for freeAn object with mass \(m=1.0 \mathrm{~g}\) and charge \(q\) is placed at point \(A\), which is \(0.05 \mathrm{~m}\) above an infinitely large, uniformly charged, nonconducting sheet \(\left(\sigma=-3.5 \cdot 10^{-5} \mathrm{C} / \mathrm{m}^{2}\right)\), as shown in the figure. Gravity is acting downward \(\left(g=9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\). Determine the number, \(N\), of electrons that must be added to or removed from the object for the object to remain motionless above the charged plane.
At which of the following locations is the electric field the strongest? a) a point \(1 \mathrm{~m}\) from a \(1 \mathrm{C}\) point charge b) a point \(1 \mathrm{~m}\) (perpendicular distance) from the center of a \(1-\mathrm{m}\) -long wire with \(1 \mathrm{C}\) of charge distributed on it c) a point \(1 \mathrm{~m}\) (perpendicular distance) from the center of a \(1-\mathrm{m}^{2}\) sheet of charge with \(1 \mathrm{C}\) of charge distributed on it d) a point \(1 \mathrm{~m}\) from the surface of a charged spherical shell of charge \(1 \mathrm{C}\) with a radius of \(1 \mathrm{~m}\) e) a point \(1 \mathrm{~m}\) from the surface of a charged spherical shell of charge \(1 \mathrm{C}\) with a radius of \(0.5 \mathrm{~m}\)
\( \mathrm{~A}+48.00-\mathrm{nC}\) point charge is placed on the \(x\) -axis at \(x=4.000 \mathrm{~m},\) and \(\mathrm{a}-24.00-\mathrm{n} \mathrm{C}\) point charge is placed on the \(y\) -axis at \(y=-6.000 \mathrm{~m} .\) What is the direction of the electric field at the origin?
A uniform sphere has a radius \(R\) and a total charge \(+Q,\) uniformly distributed throughout its volume. It is surrounded by a thick spherical shell carrying a total charge \(-Q,\) also uniformly distributed, and having an outer radius of \(2 R\). What is the electric field as a function of \(R ?\)
Consider a uniform nonconducting sphere with a charge \(\rho=3.57 \cdot 10^{-6} \mathrm{C} / \mathrm{m}^{3}\) and a radius \(R=1.72 \mathrm{~m}\). What is the magnitude of the electric field \(0.530 \mathrm{~m}\) from the center of the sphere?
What do you think about this solution?
We value your feedback to improve our textbook solutions.