Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Research suggests that the electric fields in some thunderstorm clouds can be on the order of \(10.0 \mathrm{kN} / \mathrm{C}\). Calculate the magnitude of the electric force acting on a particle with two excess electrons in the presence of a \(10.0-\mathrm{kN} / \mathrm{C}\) field.

Short Answer

Expert verified
Answer: The magnitude of the electric force acting on the particle is approximately 3.2 × 10^{-15} N.

Step by step solution

01

Identify the given values

In this problem, we are given: - Electric field strength E: 10.0 kN/C - Number of excess electrons: 2
02

Convert the electric field strength to standard units

The electric field strength is given in kN/C. To convert it into the standard unit of N/C, we will multiply by 1000: E = 10.0 kN/C × 1000 = 10,000 N/C
03

Determine the charge of the particle

Since the particle has two excess electrons, we will calculate the charge of the particle by multiplying the charge of one electron by the number of excess electrons. The charge of one electron (e) is approximately -1.6 × 10^{-19} C: Charge (q) = Number of excess electrons × Charge of one electron = 2 × (-1.6 × 10^{-19} C)
04

Calculate the electric force

The electric force (F) acting on the particle is the product of the electric field strength (E) and the charge of the particle (q): F = E × q Substitute the values of E and q from the previous steps: F = (10,000 N/C) × (2 × -1.6 × 10^{-19} C) Now, perform the calculation to obtain the electric force: F ≈ -3.2 × 10^{-15} N The negative sign indicates that the force is in the opposite direction of the electric field. In conclusion, the magnitude of the electric force acting on the particle with two excess electrons in the presence of a 10.0 kN/C electric field is approximately 3.2 × 10^{-15} N.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A body of mass \(M\), carrying charge \(Q\), falls from rest from a height \(h\) (above the ground) near the surface of the Earth, where the gravitational acceleration is \(g\) and there is an electric field with a constant component \(E\) in the vertical direction. a) Find an expression for the speed, \(v,\) of the body when it reaches the ground, in terms of \(M, Q, h, g,\) and \(E\). b) The expression from part (a) is not meaningful for certain values of \(M, g, Q,\) and \(E\). Explain what happens in such cases.

Why do electric field lines never cross?

The electric flux through a spherical Gaussian surface of radius \(R\) centered on a charge \(Q\) is \(1200 \mathrm{~N} /\left(\mathrm{C} \mathrm{m}^{2}\right) .\) What is the electric flux through a cubic Gaussian surface of side \(R\) centered on the same charge \(Q ?\) a) less than \(1200 \mathrm{~N} /\left(\mathrm{C} \mathrm{m}^{2}\right)\) b) more than \(1200 \mathrm{~N} /\left(\mathrm{C} \mathrm{m}^{2}\right)\) c) equal to \(1200 \mathrm{~N} /\left(\mathrm{C} \mathrm{m}^{2}\right)\) d) cannot be determined from the information given

A conducting solid sphere of radius \(20.0 \mathrm{~cm}\) is located with its center at the origin of a three-dimensional coordinate system. A charge of \(0.271 \mathrm{nC}\) is placed on the sphere. a) What is the magnitude of the electric field at point \((x, y, z)=\) \((23.1 \mathrm{~cm}, 1.1 \mathrm{~cm}, 0 \mathrm{~cm}) ?\) b) What is the angle of this electric field with the \(x\) -axis at this point? c) What is the magnitude of the electric field at point \((x, y, z)=\) \((4.1 \mathrm{~cm}, 1.1 \mathrm{~cm}, 0 \mathrm{~cm}) ?\)

A thin glass rod is bent into a semicircle of radius \(R\). A charge \(+Q\) is uniformly distributed along the upper half, and a charge \(-Q\) is uniformly distributed along the lower half as shown in the figure. Find the magnitude and direction of the electric field \(\vec{E}\) (in component form) at point \(P\), the center of the semicircle.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free