Chapter 22: Problem 17
A dipole is completely enclosed by a spherical surface. Describe how the total electric flux through this surface varies with the strength of the dipole.
Chapter 22: Problem 17
A dipole is completely enclosed by a spherical surface. Describe how the total electric flux through this surface varies with the strength of the dipole.
All the tools & learning materials you need for study success - in one app.
Get started for freeThree \(-9-\mathrm{mC}\) point charges are located at (0,0) \((3 \mathrm{~m}, 3 \mathrm{~m})\), and \((3 \mathrm{~m},-3 \mathrm{~m})\). What is the magnitude of the electric field at \((3 \mathrm{~m}, 0) ?\) a) \(0.9 \cdot 10^{7} \mathrm{~N} / \mathrm{C}\) b) \(1.2 \cdot 10^{7} \mathrm{~N} / \mathrm{C}\) c) \(1.8 \cdot 10^{7} \mathrm{~N} / \mathrm{C}\) d) \(2.4 \cdot 10^{7} \mathrm{~N} / \mathrm{C}\) e) \(3.6 \cdot 10^{7} \mathrm{~N} / \mathrm{C}\) f) \(5.4 \cdot 10^{7} \mathrm{~N} / \mathrm{C}\) g) \(10.8 \cdot 10^{7} \mathrm{~N} / \mathrm{C}\)
A thin, hollow, metal cylinder of radius \(R\) has a surface charge distribution \(\sigma\). A long, thin wire with a linear charge density \(\lambda / 2\) runs through the center of the cylinder. Find an expression for the electric fields and the direction of the field at each of the following locations: a) \(r \leq R\) b) \(r \geq R\)
A point charge, \(q=4.00 \cdot 10^{-9} \mathrm{C},\) is placed on the \(x\) -axis at the origin. What is the electric field produced at \(x=25.0 \mathrm{~cm} ?\)
A conducting solid sphere of radius \(20.0 \mathrm{~cm}\) is located with its center at the origin of a three-dimensional coordinate system. A charge of \(0.271 \mathrm{nC}\) is placed on the sphere. a) What is the magnitude of the electric field at point \((x, y, z)=\) \((23.1 \mathrm{~cm}, 1.1 \mathrm{~cm}, 0 \mathrm{~cm}) ?\) b) What is the angle of this electric field with the \(x\) -axis at this point? c) What is the magnitude of the electric field at point \((x, y, z)=\) \((4.1 \mathrm{~cm}, 1.1 \mathrm{~cm}, 0 \mathrm{~cm}) ?\)
Research suggests that the electric fields in some thunderstorm clouds can be on the order of \(10.0 \mathrm{kN} / \mathrm{C}\). Calculate the magnitude of the electric force acting on a particle with two excess electrons in the presence of a \(10.0-\mathrm{kN} / \mathrm{C}\) field.
What do you think about this solution?
We value your feedback to improve our textbook solutions.