Chapter 21: Problem 29
A current of \(5.00 \mathrm{~mA}\) is enough to make your muscles twitch. Calculate how many electrons flow through your skin if you are exposed to such a current for \(10.0 \mathrm{~s}\).
Chapter 21: Problem 29
A current of \(5.00 \mathrm{~mA}\) is enough to make your muscles twitch. Calculate how many electrons flow through your skin if you are exposed to such a current for \(10.0 \mathrm{~s}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeTwo point charges lie on the \(x\) -axis. If one point charge is \(6.0 \mu C\) and lies at the origin and the other is \(-2.0 \mu C\) and lies at \(20.0 \mathrm{~cm}\), at what position must a third charge be placed to be in equilibrium?
Identical point charges \(Q\) are placed at each of the four corners of a rectangle measuring \(2.0 \mathrm{~m}\) by \(3.0 \mathrm{~m} .\) If \(Q=32 \mu C,\) what is the magnitude of the electrostatic force on any one of the charges?
A silicon sample is doped with phosphorus at 1 part per \(1.00 \cdot 10^{6} .\) Phosphorus acts as an electron donor, providing one free electron per atom. The density of silicon is \(2.33 \mathrm{~g} / \mathrm{cm}^{3},\) and its atomic mass is \(28.09 \mathrm{~g} / \mathrm{mol}\) a) Calculate the number of free (conduction) electrons per unit volume of the doped silicon. b) Compare the result from part (a) with the number of conduction electrons per unit volume of copper wire (assume each copper atom produces one free (conduction) electron). The density of copper is \(8.96 \mathrm{~g} / \mathrm{cm}^{3},\) and its atomic mass is \(63.54 \mathrm{~g} / \mathrm{mol}\)
When you exit a car and the humidity is low, you often experience a shock from static electricity created by sliding across the seat. How can you discharge yourself without experiencing a painful shock? Why is it dangerous to get back into your car while fueling your car?
A metal plate is connected by a conductor to a ground through a switch. The switch is initially closed. A charge \(+Q\) is brought close to the plate without touching it, and then the switch is opened. After the switch is opened, the charge \(+Q\) is removed. What is the charge on the plate then? a) The plate is uncharged. b) The plate is positively charged. c) The plate is negatively charged. d) The plate could be either positively or negatively charged, depending on the charge it had before \(+Q\) was brought near.
What do you think about this solution?
We value your feedback to improve our textbook solutions.