Chapter 20: Problem 4
An ideal gas undergoes an isothermal expansion. What will happen to its entropy? a) It will increase. c) It's impossible to determine. b) It will decrease. d) It will remain unchanged.
Chapter 20: Problem 4
An ideal gas undergoes an isothermal expansion. What will happen to its entropy? a) It will increase. c) It's impossible to determine. b) It will decrease. d) It will remain unchanged.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe number of macrostates that can result from rolling a set of \(N\) six-sided dice is the number of different totals that can be obtained by adding the pips on the \(N\) faces that end up on top. The number of macrostates is a) \(6^{N}\) b) \(6 N\) c) \(6 N-1\). d) \(5 N+1\).
An ideal gas is enclosed in a cylinder with a movable piston at the top. The walls of the cylinder are insulated, so no heat can enter or exit. The gas initially occupies volume \(V_{1}\) and has pressure \(p_{1}\) and temperature \(T_{1}\). The piston is then moved very rapidly to a volume of \(V_{2}=3 V_{1}\). The process happens so rapidly that the enclosed gas does not do any work. Find \(p_{2}, T_{2},\) and the change in entropy of the gas.
A refrigerator with a coefficient of performance of 3.80 is used to \(\operatorname{cool} 2.00 \mathrm{~L}\) of mineral water from room temperature \(\left(25.0^{\circ} \mathrm{C}\right)\) to \(4.00^{\circ} \mathrm{C} .\) If the refrigerator uses \(480 . \mathrm{W}\) how long will it take the water to reach \(4.00^{\circ} \mathrm{C}\) ? Recall that the heat capacity of water is \(4.19 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K}),\) and the density of water is \(1.00 \mathrm{~g} / \mathrm{cm}^{3}\). Assume the other contents of the refrig. erator are already at \(4.00^{\circ} \mathrm{C}\).
20.14 Imagine dividing a box into two equal parts, part \(A\) on the left and part \(B\) on the right. Four identical gas atoms, numbered 1 through 4 , are placed in the box. What are most probable and second most probable distributions (for example, 3 atoms in \(\mathrm{A}, 1\) atom in \(\mathrm{B}\) ) of gas atoms in the box? Calculate the entropy, \(S\), for these two distributions. Note that the configuration with 3 atoms in \(\mathrm{A}\) and 1 atom in \(\mathrm{B}\) and that with 1 atom in A and three atoms in B count as different configurations.
An Otto engine has a maximum efficiency of \(20.0 \%\) find the compression ratio. Assume that the gas is diatomic.
What do you think about this solution?
We value your feedback to improve our textbook solutions.