Chapter 20: Problem 27
Suppose a Brayton engine (see Problem 20.26 ) is run as a refrigerator. In this case, the cycle begins at temperature \(T_{1}\), and the gas is isobarically expanded until it reaches temperature \(T_{4}\). Then the gas is adiabatically compressed, until its temperature is \(T_{3}\). It is then isobarically compressed, and the temperature changes to \(T_{2}\). Finally, it is adiabatically expanded until it returns to temperature \(T_{1}\) - a) Sketch this cycle on a \(p V\) -diagram. b) Show that the coefficient of performance of the engine is given by \(K=\left(T_{4}-T_{1}\right) /\left(T_{3}-T_{2}-T_{4}+T_{1}\right) .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.