Chapter 20: Problem 20
Is it a violation of the Second Law of Thermodynamics to capture all the exhaust heat from a steam engine and funnel it back into the system to do work? Why or why not?
Chapter 20: Problem 20
Is it a violation of the Second Law of Thermodynamics to capture all the exhaust heat from a steam engine and funnel it back into the system to do work? Why or why not?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a room air conditioner using a Carnot cycle at maximum theoretical efficiency and operating between the temperatures of \(18^{\circ} \mathrm{C}\) (indoors) and \(35^{\circ} \mathrm{C}\) (outdoors). For each 1.00 J of heat flowing out of the room into the air conditioner: a) How much heat flows out of the air conditioner to the outdoors? b) By approximately how much does the entropy of the room decrease? c) By approximately how much does the entropy of the outdoor air increase?
You are given a beaker of water. What can you do to increase its entropy? What can you do to decrease its entropy?
A water-cooled engine produces \(1000 .\) W of power. Water enters the engine block at \(15.0^{\circ} \mathrm{C}\) and exits at \(30.0^{\circ} \mathrm{C}\). The rate of water flow is \(100 . \mathrm{L} / \mathrm{h}\). What is the engine's efficiency?
A volume of \(6.00 \mathrm{~L}\) of a monatomic ideal gas, originally at \(400 . \mathrm{K}\) and a pressure of \(3.00 \mathrm{~atm}\) (called state 1 ), undergoes the following processes, all done reversibly: \(1 \rightarrow 2\) isothermal expansion to \(V_{2}=4 V_{1}\) \(2 \rightarrow 3\) isobaric compression \(3 \rightarrow 1\) adiabatic compression to its original state Find the entropy change for each process.
One of your friends begins to talk about how unfortunate the Second Law of Thermodynamics is, how sad it is that entropy must always increase, leading to the irreversible degradation of useful energy into heat and the decay of all things. Is there any counterargument you could give that would suggest that the Second Law is in fact a blessing?
What do you think about this solution?
We value your feedback to improve our textbook solutions.