Chapter 20: Problem 18
Explain how it is possible for a heat pump like that in Example 20.2 to operate with a power of only \(6.28 \mathrm{~kW}\) and heat a house that is losing thermal energy at a rate of \(21.98 \mathrm{~kW}\).
Chapter 20: Problem 18
Explain how it is possible for a heat pump like that in Example 20.2 to operate with a power of only \(6.28 \mathrm{~kW}\) and heat a house that is losing thermal energy at a rate of \(21.98 \mathrm{~kW}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeA Carnot engine operates between a warmer reservoir at a temperature \(T_{1}\) and a cooler reservoir at a temperature \(T_{2}\). It is found that increasing the temperature of the warmer reservoir by a factor of 2 while keeping the same temperature for the cooler reservoir increases the efficiency of the Carnot engine by a factor of 2 as well. Find the efficiency of the engine and the ratio of the temperatures of the two reservoirs in their original form.
Why might a heat pump have an advantage over a space heater that converts electrical energy directly into thermal energy?
Consider a room air conditioner using a Carnot cycle at maximum theoretical efficiency and operating between the temperatures of \(18^{\circ} \mathrm{C}\) (indoors) and \(35^{\circ} \mathrm{C}\) (outdoors). For each 1.00 J of heat flowing out of the room into the air conditioner: a) How much heat flows out of the air conditioner to the outdoors? b) By approximately how much does the entropy of the room decrease? c) By approximately how much does the entropy of the outdoor air increase?
The change in entropy of a system can be calculated because a) it depends only on the c) entropy always increases. initial and final states. d) none of the above. b) any process is reversible.
A water-cooled engine produces \(1000 .\) W of power. Water enters the engine block at \(15.0^{\circ} \mathrm{C}\) and exits at \(30.0^{\circ} \mathrm{C}\). The rate of water flow is \(100 . \mathrm{L} / \mathrm{h}\). What is the engine's efficiency?
What do you think about this solution?
We value your feedback to improve our textbook solutions.