Chapter 2: Problem 61
A ball is thrown directly downward, with an initial speed of \(10.0 \mathrm{~m} / \mathrm{s}\), from a height of \(50.0 \mathrm{~m}\). After what time interval does the ball strike the ground?
Chapter 2: Problem 61
A ball is thrown directly downward, with an initial speed of \(10.0 \mathrm{~m} / \mathrm{s}\), from a height of \(50.0 \mathrm{~m}\). After what time interval does the ball strike the ground?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe position of a particle as a function of time is given as \(x(t)=\frac{1}{4} x_{0} e^{3 \alpha t}\), where \(\alpha\) is a positive constant. a) At what time is the particle at \(2 x_{0}\) ? b) What is the speed of the particle as a function of time? c) What is the acceleration of the particle as a function of time? d) What are the SI units for \(\alpha\) ?
An object is thrown vertically and has an upward velocity of \(25 \mathrm{~m} / \mathrm{s}\) when it reaches one fourth of its maximum height above its launch point. What is the initial (launch) speed of the object?
You drop a water balloon straight down from your dormitory window \(80.0 \mathrm{~m}\) above your friend's head. At \(2.00 \mathrm{~s}\) after you drop the balloon, not realizing it has water in it your friend fires a dart from a gun, which is at the same height as his head, directly upward toward the balloon with an initial velocity of \(20.0 \mathrm{~m} / \mathrm{s}\). a) How long after you drop the balloon will the dart burst the balloon? b) How long after the dart hits the balloon will your friend have to move out of the way of the falling water? Assume the balloon breaks instantaneously at the touch of the dart.
A stone is thrown upward, from ground level, with an initial velocity of \(10.0 \mathrm{~m} / \mathrm{s}\). a) What is the velocity of the stone after 0.50 s? b) How high above ground level is the stone after 0.50 s?
After you apply the brakes, the acceleration of your car is in the opposite direction to its velocity. If the acceleration of your car remains constant, describe the motion of your car.
What do you think about this solution?
We value your feedback to improve our textbook solutions.