Chapter 2: Problem 50
How much time does it take for a car to accelerate from a standing start to \(22.2 \mathrm{~m} / \mathrm{s}\) if the acceleration is constant and the car covers \(243 \mathrm{~m}\) during the acceleration?
Chapter 2: Problem 50
How much time does it take for a car to accelerate from a standing start to \(22.2 \mathrm{~m} / \mathrm{s}\) if the acceleration is constant and the car covers \(243 \mathrm{~m}\) during the acceleration?
All the tools & learning materials you need for study success - in one app.
Get started for freeA particle starts from rest at \(x=0\) and moves for \(20 \mathrm{~s}\) with an acceleration of \(+2.0 \mathrm{~cm} / \mathrm{s}^{2}\). For the next \(40 \mathrm{~s}\), the acceleration of the particle is \(-4.0 \mathrm{~cm} / \mathrm{s}^{2} .\) What is the position of the particle at the end of this motion?
A jet touches down on a runway with a speed of \(142.4 \mathrm{mph} .\) After \(12.4 \mathrm{~s},\) the jet comes to a complete stop. Assuming constant acceleration of the jet, how far down the runway from where it touched down does the jet stand?
A car travels at 22.0 mph for 15.0 min and 35.0 mph for \(30.0 \mathrm{~min}\). How far does it travel overall? a) \(23.0 \mathrm{~m}\) b) \(3.70 \cdot 10^{4} \mathrm{~m}\) c) \(1.38 \cdot 10^{3} \mathrm{~m}\) d) \(3.30 \cdot 10^{2} \mathrm{~m}\)
The position of a particle moving along the \(x\) -axis varies with time according to the expression \(x=4 t^{2},\) where \(x\) is in meters and \(t\) is in seconds. Evaluate the particle's position a) at \(t=2.00 \mathrm{~s}\). b) at \(2.00 \mathrm{~s}+\Delta t\) c) Evaluate the limit of \(\Delta x / \Delta t\) as \(\Delta t\) approaches zero, to find the velocity at \(t=2.00 \mathrm{~s}\).
You drop a water balloon straight down from your dormitory window \(80.0 \mathrm{~m}\) above your friend's head. At \(2.00 \mathrm{~s}\) after you drop the balloon, not realizing it has water in it your friend fires a dart from a gun, which is at the same height as his head, directly upward toward the balloon with an initial velocity of \(20.0 \mathrm{~m} / \mathrm{s}\). a) How long after you drop the balloon will the dart burst the balloon? b) How long after the dart hits the balloon will your friend have to move out of the way of the falling water? Assume the balloon breaks instantaneously at the touch of the dart.
What do you think about this solution?
We value your feedback to improve our textbook solutions.