Chapter 2: Problem 13
After you apply the brakes, the acceleration of your car is in the opposite direction to its velocity. If the acceleration of your car remains constant, describe the motion of your car.
Chapter 2: Problem 13
After you apply the brakes, the acceleration of your car is in the opposite direction to its velocity. If the acceleration of your car remains constant, describe the motion of your car.
All the tools & learning materials you need for study success - in one app.
Get started for freeA car is traveling due west at \(20.0 \mathrm{~m} / \mathrm{s}\). Find the velocity of the car after \(3.00 \mathrm{~s}\) if its acceleration is \(1.0 \mathrm{~m} / \mathrm{s}^{2}\) due west. Assume the acceleration remains constant. a) \(17.0 \mathrm{~m} / \mathrm{s}\) west b) \(17.0 \mathrm{~m} / \mathrm{s}\) east c) \(23.0 \mathrm{~m} / \mathrm{s}\) west d) \(23.0 \mathrm{~m} / \mathrm{s}\) east e) \(11.0 \mathrm{~m} / \mathrm{s}\) south
Your friend's car starts from rest and travels \(0.500 \mathrm{~km}\) in \(10.0 \mathrm{~s}\). What is the magnitude of the constant acceleration required to do this?
An electron, starting from rest and moving with a constant acceleration, travels \(1.0 \mathrm{~cm}\) in \(2.0 \mathrm{~ms}\). What is the magnitude of this acceleration? a) \(25 \mathrm{~km} / \mathrm{s}^{2}\) b) \(20 \mathrm{~km} / \mathrm{s}^{2}\) c) \(15 \mathrm{~km} / \mathrm{s}^{2}\) d) \(10 \mathrm{~km} / \mathrm{s}^{2}\) e) \(5.0 \mathrm{~km} / \mathrm{s}^{2}\)
The position of a particle moving along the \(x\) -axis is given by \(x=\left(11+14 t-2.0 t^{2}\right),\) where \(t\) is in seconds and \(x\) is in meters. What is the average velocity during the time interval from \(t=1.0 \mathrm{~s}\) to \(t=4.0 \mathrm{~s} ?\)
Starting from rest, a boat increases its speed to \(5.00 \mathrm{~m} / \mathrm{s}\) with constant acceleration. a) What is the boat's average speed? b) If it takes the boat 4.00 s to reach this speed, how far has it traveled?
What do you think about this solution?
We value your feedback to improve our textbook solutions.