Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two athletes jump straight up. Upon leaving the ground, Adam has half the initial speed of Bob. Compared to Adam, Bob jumps a) 0.50 times as high. b) 1.41 times as high. c) twice as high. d) three times as high. e) four times as high.

Short Answer

Expert verified
Answer: e) Bob jumps four times as high as Adam.

Step by step solution

01

1. Write down given information

We have the initial speed of Adam and Bob, with Adam having half the initial speed of Bob. Let Va be the initial speed of Adam and Vb be the initial speed of Bob. Then: Va = 0.5 * Vb
02

2. Use kinematic equations

We know that the height (h) depends on the initial speed (v0) of a jump. The maximum height is achieved when the final velocity is zero (vf=0). Using the kinematic equation: vf^2 = v0^2 - 2gh, we can find the height by rearranging it for h: h = (v0^2) / (2g) Where g is the acceleration due to gravity, which is approximately 9.81 m/s^2.
03

3. Substitute initial speeds

Now we can find the height jumped by both Adam and Bob using their initial speeds. For Adam: ha = (Va^2) / (2g) For Bob: hb = (Vb^2) / (2g)
04

4. Compare their heights

We need to find the ratio of their heights (hb / ha), to determine by how much higher Bob jumps compared to Adam: hb / ha = ((Vb^2) / (2g)) / ((Va^2) / (2g)) The '2g' in both the numerator and the denominator cancels out, and we can substitute Va = 0.5 * Vb: hb / ha = (Vb^2) / ((0.5 * Vb)^2)
05

5. Simplify the expression

When simplifying the expression, we get: hb / ha = (Vb^2) / (0.25 * Vb^2) = 1/0.25 = 4 So, the answer is: e) Bob jumps four times as high as Adam.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A double speed trap is set up on a freeway. One police cruiser is hidden behind a billboard, and another is some distance away under a bridge. As a sedan passes by the first cruiser, its speed is measured to be \(105.9 \mathrm{mph}\). Since the driver has a radar detector, he is alerted to the fact that his speed has been measured, and he tries to slow his car down gradually without stepping on the brakes and alerting the police that he knew he was going too fast. Just taking the foot off the gas leads to a constant deceleration. Exactly 7.05 s later the sedan passes the second police cruiser. Now its speed is measured to be only \(67.1 \mathrm{mph}\), just below the local freeway speed limit. a) What is the value of the deceleration? b) How far apart are the two cruisers?

A car is traveling due west at \(20.0 \mathrm{~m} / \mathrm{s}\). Find the velocity of the car after \(37.00 \mathrm{~s}\) if its constant acceleration is \(1.0 \mathrm{~m} / \mathrm{s}^{2}\) due east. Assume the acceleration remains constant. a) \(17.0 \mathrm{~m} / \mathrm{s}\) west b) \(17.0 \mathrm{~m} / \mathrm{s}\) east c) \(23.0 \mathrm{~m} / \mathrm{s}\) west d) \(23.0 \mathrm{~m} / \mathrm{s}\) east e) \(11.0 \mathrm{~m} / \mathrm{s}\) south

The minimum distance necessary for a car to brake to a stop from a speed of \(100.0 \mathrm{~km} / \mathrm{h}\) is \(40.00 \mathrm{~m}\) on a dry pavement. What is the minimum distance necessary for this car to brake to a stop from a speed of \(130.0 \mathrm{~km} / \mathrm{h}\) on dry pavement?

In a fancy hotel, the back of the elevator is made of glass so that you can enjoy a lovely view on your ride. The elevator travels at an average speed of \(1.75 \mathrm{~m} / \mathrm{s}\). A boy on the 15th floor, \(80.0 \mathrm{~m}\) above the ground level, drops a rock at the same instant the elevator starts its ascent from the 1st to the 5th floor. Assume the elevator travels at its average speed for the entire trip and neglect the dimensions of the elevator. a) How long after it was dropped do you see the rock? b) How long does it take for the rock to reach ground level?

A car traveling at \(25.0 \mathrm{~m} / \mathrm{s}\) applies the brakes and decelerates uniformly at a rate of \(1.2 \mathrm{~m} / \mathrm{s}^{2}\) a) How far does it travel in \(3.0 \mathrm{~s}\) ? b) What is its velocity at the end of this time interval? c) How long does it take for the car to come to a stop? d) What distance does the car travel before coming to a stop?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free