Chapter 19: Problem 70
A gas expands at constant pressure from \(3.00 \mathrm{~L}\) at \(15.0^{\circ} \mathrm{C}\) until the volume is \(4.00 \mathrm{~L}\). What is the final temperature of the gas?
Chapter 19: Problem 70
A gas expands at constant pressure from \(3.00 \mathrm{~L}\) at \(15.0^{\circ} \mathrm{C}\) until the volume is \(4.00 \mathrm{~L}\). What is the final temperature of the gas?
All the tools & learning materials you need for study success - in one app.
Get started for freeTreating air as an ideal gas of diatomic molecules, calculate how much heat is required to raise the temperature of the air in an \(8.00 \mathrm{~m}\) by \(10.0 \mathrm{~m}\) by \(3.00 \mathrm{~m}\) room from \(20.0^{\circ} \mathrm{C}\) to \(22.0^{\circ} \mathrm{C}\) at \(101 \mathrm{kPa}\). Neglect the change in the number of moles of air in the room.
6.00 liters of a monatomic ideal gas, originally at \(400 . \mathrm{K}\) and a pressure of \(3.00 \mathrm{~atm}\) (called state 1 ), undergo the following processes: \(1 \rightarrow 2\) isothermal expansion to \(V_{2}=4 V_{1}\) \(2 \rightarrow 3\) isobaric compression \(3 \rightarrow 1\) adiabatic compression to its original state Find the pressure, volume, and temperature of the gas in states 2 and \(3 .\) How many moles of the gas are there?
a) What is the root-mean-square speed for a collection of helium- 4 atoms at \(300 . \mathrm{K} ?\) b) What is the root-mean-square speed for a collection of helium- 3 atoms at 300 . K?
A closed auditorium of volume \(2.50 \cdot 10^{4} \mathrm{~m}^{3}\) is filled with 2000 people at the beginning of a show, and the air in the space is at a temperature of \(293 \mathrm{~K}\) and a pressure of \(1.013 \cdot 10^{5} \mathrm{~Pa}\). If there were no ventilation, by how much would the temperature of the air rise during the \(2.00-\mathrm{h}\) show if each person metabolizes at a rate of \(70.0 \mathrm{~W} ?\)
When you blow hard on your hand, it feels cool, but when you breathe softly, it feels warm. Why?
What do you think about this solution?
We value your feedback to improve our textbook solutions.