Chapter 19: Problem 14
Explain why the average velocity of air molecules in a closed auditorium is zero but their root-mean-square speed or average speed is not zero.
Chapter 19: Problem 14
Explain why the average velocity of air molecules in a closed auditorium is zero but their root-mean-square speed or average speed is not zero.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen you blow hard on your hand, it feels cool, but when you breathe softly, it feels warm. Why?
A closed auditorium of volume \(2.50 \cdot 10^{4} \mathrm{~m}^{3}\) is filled with 2000 people at the beginning of a show, and the air in the space is at a temperature of \(293 \mathrm{~K}\) and a pressure of \(1.013 \cdot 10^{5} \mathrm{~Pa}\). If there were no ventilation, by how much would the temperature of the air rise during the \(2.00-\mathrm{h}\) show if each person metabolizes at a rate of \(70.0 \mathrm{~W} ?\)
A sealed container contains 1.00 mole of neon gas at STP. Estimate the number of neon atoms having speeds in the range from \(200.00 \mathrm{~m} / \mathrm{s}\) to \(202.00 \mathrm{~m} / \mathrm{s}\). (Hint: Assume the probability of neon atoms having speeds between \(200.00 \mathrm{~m} / \mathrm{s}\) and \(202.00 \mathrm{~m} / \mathrm{s}\) is constant.
You are designing an experiment that requires a gas with \(\gamma=1.60 .\) However, from your physics lectures, you remember that no gas has such a \(\gamma\) value. However, you also remember that mixing monatomic and diatomic gases can yield a gas with such a \(\gamma\) value. Determine the fraction of diatomic molecules a mixture has to have to obtain this value.
An ideal gas may expand from an initial pressure, \(p_{\mathrm{i}},\) and volume, \(V_{\mathrm{i}},\) to a final volume, \(V_{\mathrm{f}}\), isothermally, adiabatically, or isobarically. For which type of process is the heat that is added to the gas the largest? (Assume that \(p_{i}, V_{i}\) and \(V_{f}\) are the same for each process.) a) isothermal process b) adiabatic process c) isobaric process d) All the processes have the same heat flow.
What do you think about this solution?
We value your feedback to improve our textbook solutions.