Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A thermos bottle fitted with a piston is filled with a gas. Since the thermos bottle is well insulated, no heat can enter or leave it. The piston is pushed in, compressing the gas. a) What happens to the pressure of the gas? Does it increase, decrease, or stay the same? b) What happens to the temperature of the gas? Does it increase, decrease, or stay the same? c) Do any other properties of the gas change?

Short Answer

Expert verified
Answer: During adiabatic compression, the pressure and temperature of the gas increase, while other properties, such as the number of moles and gas constant, remain constant.

Step by step solution

01

Recall the Ideal Gas Law

The Ideal Gas Law is given by the equation: PV = nRT where P is the pressure, V is the volume, n is the number of moles of gas, R is the ideal gas constant, and T is the temperature (in Kelvin). This equation helps us understand the relationship between the gas properties during the compression process.
02

Analyze the impact of compression on pressure

As the piston is pushed in, the volume of the gas (V) decreases. According to the Ideal Gas Law (PV = nRT), if V decreases while n, R, and T remain constant, then the pressure (P) must increase for the equation to be balanced. Therefore, the pressure of the gas increases.
03

Consider the adiabatic process

Since the thermos is well insulated, the compression occurs without any heat exchange, which is called an adiabatic process. In an adiabatic process, the following relationship holds: PV^γ = constant where γ is the adiabatic index (also known as the heat capacity ratio, equal to the ratio of specific heat capacities, Cp/Cv).
04

Analyze the impact of compression on temperature

In the adiabatic process, as the piston is pushed in and the gas volume decreases, the pressure increases. From the equation PV^γ = constant, we observe that if V decreases and P increases, T must also increase to maintain the equation's balance. Therefore, during adiabatic compression, the temperature of the gas increases.
05

Determine any other property changes

From the Ideal Gas Law and the adiabatic process equation, we can conclude that the main properties of the gas that change are pressure and temperature. Other variables, such as the number of moles (n) and the gas constant (R) remain constant during the process. So, no other properties of the gas change. In summary: a) The pressure of the gas increases. b) The temperature of the gas increases. c) No other properties of the gas change.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Which of the following statements is (are) true? a) When a system does work, its internal energy always decreases. b) Work done on a system always decreases its internal energy. c) When a system does work on its surroundings, the sign of the work is always positive. d) Positive work done on a system is always equal to the system's gain in internal energy. e) If you push on the piston of a gas-filled cylinder, the energy of the gas in the cylinder will increase.

For a class demonstration, your physics instructor pours \(1.00 \mathrm{~kg}\) of steam at \(100.0^{\circ} \mathrm{C}\) over \(4.00 \mathrm{~kg}\) of ice at \(0.00^{\circ} \mathrm{C}\) and allows the system to reach equilibrium. He is then going to measure the temperature of the system. While the system reaches equilibrium, you are given the latent heats of ice and steam and the specific heat of water: \(L_{\text {ice }}=3.33 \cdot 10^{5} \mathrm{~J} / \mathrm{kg}\), \(L_{\text {steam }}=2.26 \cdot 10^{6} \mathrm{~J} / \mathrm{kg}, c_{\text {water }}=4186 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right) .\) You are asked to calculate the final equilibrium temperature of the system. What value do you find?

When an immersion glass thermometer is used to measure the temperature of a liquid, the temperature reading will be affected by an error due to heat transfer between the liquid and the thermometer. Suppose you want to measure the temperature of \(6.00 \mathrm{~mL}\) of water in a Pyrex glass vial thermally insulated from the environment. The empty vial has a mass of \(5.00 \mathrm{~g}\). The thermometer you use is made of Pyrex glass as well and has a mass of \(15.0 \mathrm{~g}\), of which \(4.00 \mathrm{~g}\) is the mercury inside the thermometer. The thermometer is initially at room temperature \(\left(20.0^{\circ} \mathrm{C}\right) .\) You place the thermometer in the water in the vial and, after a while, you read an equilibrium temperature of \(29.0^{\circ} \mathrm{C} .\) What was the actual temperature of the water in the vial before the temperature was measured? The specific heat capacity of Pyrex glass around room temperature is \(800 . J /(\mathrm{kg} \mathrm{K})\) and that of liquid mercury at room temperature is \(140 . \mathrm{J} /(\mathrm{kg} \mathrm{K})\)

A \(100 .\) mm by \(100 .\) mm by 5.00 mm block of ice at \(0^{\circ} \mathrm{C}\) is placed on its flat face on a 10.0 -mm-thick metal disk that covers a pot of boiling water at normal atmospheric pressure. The time needed for the entire ice block to melt is measured to be \(0.400 \mathrm{~s} .\) The density of ice is \(920 . \mathrm{kg} / \mathrm{m}^{3} .\) Use the data in Table 18.3 to determine the metal the disk is most likely made of

The thermal conductivity of fiberglass batting, which is 4.0 in thick, is \(8.0 \cdot 10^{-6} \mathrm{BTU} /\left(\mathrm{ft}^{\circ} \mathrm{F} \mathrm{s}\right) .\) What is the \(R\) value (in \(\left.\mathrm{ft}^{2}{ }^{\circ} \mathrm{F} \mathrm{h} / \mathrm{BTU}\right) ?\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free