Chapter 18: Problem 13
Why does tile feel so much colder to your feet after a bath than a bath rug? Why is this effect more striking when your feet are cold?
Chapter 18: Problem 13
Why does tile feel so much colder to your feet after a bath than a bath rug? Why is this effect more striking when your feet are cold?
All the tools & learning materials you need for study success - in one app.
Get started for freeAn air-cooled motorcycle engine loses a significant amount of heat through thermal radiation according to the Stefan-Boltzmann equation. Assume that the ambient temperature is \(T_{0}=27^{\circ} \mathrm{C}(300 \mathrm{~K})\). Suppose the engine generates 15 hp \((11 \mathrm{~kW})\) of power and, due to several deep surface fins, has a surface area of \(A=0.50 \mathrm{~m}^{2}\). A shiny engine has an emissivity \(e=0.050\), whereas an engine that is painted black has \(e=0.95 .\) Determine the equilibrium temperatures for the black engine and the shiny engine. (Assume that radiation is the only mode by which heat is dissipated from the engine.)
Arthur Clarke wrote an interesting short story called "A Slight Case of Sunstroke." Disgruntled football fans came to the stadium one day equipped with mirrors and were ready to barbecue the referee if he favored one team over the other. Imagine the referee to be a cylinder filled with water of mass \(60.0 \mathrm{~kg}\) at \(35.0^{\circ} \mathrm{C}\). Also imagine that this cylinder absorbs all the light reflected on it from 50,000 mirrors. If the heat capacity of water is \(4.20 \cdot 10^{3} \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right),\) how long will it take to raise the temperature of the water to \(100 .{ }^{\circ} \mathrm{C}\) ? Assume that the Sun gives out \(1.00 \cdot 10^{3} \mathrm{~W} / \mathrm{m}^{2},\) the dimensions of each mirror are \(25.0 \mathrm{~cm}\) by \(25.0 \mathrm{~cm},\) and the mirrors are held at an angle of \(45.0^{\circ}\)
An aluminum block of mass \(M_{\mathrm{Al}}=2.0 \mathrm{~kg}\) and specific heat \(C_{\mathrm{Al}}=910 \mathrm{~J} /(\mathrm{kg} \mathrm{K})\) is at an initial temperature of \(1000{ }^{\circ} \mathrm{C}\) and is dropped into a bucket of water. The water has mass \(M_{\mathrm{H}_{2} \mathrm{O}}=12 \mathrm{~kg}\) and specific heat \(C_{\mathrm{H}_{2} \mathrm{O}}=4190 \mathrm{~J} /(\mathrm{kg} \mathrm{K})\) and is at room temperature \(\left(25^{\circ} \mathrm{C}\right) .\) What is the approximate final temperature of the system when it reaches thermal equilibrium? (Neglect heat loss out of the system.) a) \(50^{\circ} \mathrm{C}\) b) \(60^{\circ} \mathrm{C}\) c) \(70^{\circ} \mathrm{C}\) d) \(80^{\circ} \mathrm{C}\)
Suppose \(0.010 \mathrm{~kg}\) of steam (at \(100.00^{\circ} \mathrm{C}\) ) is added to \(0.10 \mathrm{~kg}\) of water (initially at \(\left.19.0^{\circ} \mathrm{C}\right)\). The water is inside an aluminum cup of mass \(35 \mathrm{~g}\). The cup is inside a perfectly insulated calorimetry container that prevents heat flow with the outside environment. Find the final temperature of the water after equilibrium is reached.
Water is an excellent coolant as a result of its very high heat capacity. Calculate the amount of heat that is required to change the temperature of \(10.0 \mathrm{~kg}\) of water by \(10.0 \mathrm{~K}\). Now calculate the kinetic energy of a car with \(m=1.00 \cdot 10^{3} \mathrm{~kg}\) moving at a speed of \(27.0 \mathrm{~m} / \mathrm{s}(60.0 \mathrm{mph}) .\) Compare the two quantities.
What do you think about this solution?
We value your feedback to improve our textbook solutions.