Chapter 17: Problem 57
In order to create a tight fit between two metal parts, machinists sometimes make the interior part larger than the hole into which it will fit and then either cool the interior part or heat the exterior part until they fogether. Suppose an aluminum rod with diameter \(D_{1}\) (at \(\left.2.0 \cdot 10^{1}{ }^{\circ} \mathrm{C}\right)\) is to be fit into a hole in a brass plate that has a diameter \(D_{2}=10.000 \mathrm{~mm}\) (at \(\left.2.0 \cdot 10^{1}{ }^{\circ} \mathrm{C}\right) .\) The machinists can cool the rod to \(77.0 \mathrm{~K}\) by immersing it in liquid nitrogen. What is the largest possible diameter that the rod can have at \(2.0 \cdot 10^{1}{ }^{\circ} \mathrm{C}\) and just fit into the hole if the rod is cooled to \(77.0 \mathrm{~K}\) and the brass plate is left at \(2.0 \cdot 10^{1}{ }^{\circ} \mathrm{C} ?\) The linear expansion coefficients for aluminum and brass are \(22 \cdot 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\) and \(19 \cdot 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\), respectively.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.