Chapter 17: Problem 38
You are designing a precision mercury thermometer based on the thermal expansion of mercury \(\left(\beta=1.8 \cdot 10^{-4}{ }^{\circ} \mathrm{C}^{-1}\right)\) which causes the mercury to expand up a thin capillary as the temperature increases. The equation for the change in volume of the mercury as a function of temperature is \(\Delta V=\beta V_{0} \Delta T\) where \(V_{0}\) is the initial volume of the mercury and \(\Delta V\) is the change in volume due to a change in temperature, \(\Delta T .\) In response to a temperature change of \(1.0^{\circ} \mathrm{C}\), the column of mercury in your precision thermometer should move a distance \(D=1.0 \mathrm{~cm}\) up a cylindrical capillary of radius \(r=0.10 \mathrm{~mm} .\) Determine the initial volume of mercury that allows this change. Then find the radius of a spherical bulb that contains this volume of mercury.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.