Chapter 17: Problem 13
Explain why it might be difficult to weld aluminum to steel or to weld any two unlike metals together.
Chapter 17: Problem 13
Explain why it might be difficult to weld aluminum to steel or to weld any two unlike metals together.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn a pickup basketball game, your friend cracked one of his teeth in a collision with another player while attempting to make a basket. To correct the problem, his dentist placed a steel band of initial internal diameter \(4.4 \mathrm{~mm},\) and a crosssectional area of width \(3.5 \mathrm{~mm},\) and thickness \(0.45 \mathrm{~mm}\) on the tooth. Before placing the band on the tooth, he heated the band to \(70 .{ }^{\circ} \mathrm{C}\). What will be the tension in the band once it cools down to the temperature in your friend's mouth \(\left(37^{\circ} \mathrm{C}\right) ?\)
On a cool morning, with the temperature at \(15.0^{\circ} \mathrm{C}\), a painter fills a 5.00 -gal aluminum container to the brim with turpentine. When the temperature reaches \(27.0^{\circ} \mathrm{C}\), how much fluid spills out of the container? The volume expansion coefficient for this brand of turpentine is \(9.00 \cdot 10^{-4}{ }^{\circ} \mathrm{C}^{-1}\).
You are building a device for monitoring ultracold environments. Because the device will be used in environments where its temperature will change by \(200 .{ }^{\circ} \mathrm{C}\) in \(3.00 \mathrm{~s}\), it must have the ability to withstand thermal shock (rapid temperature changes). The volume of the device is \(5.00 \cdot 10^{-5} \mathrm{~m}^{3}\), and if the volume changes by \(1.00 \cdot 10^{-7} \mathrm{~m}^{3}\) in a time interval of \(5.00 \mathrm{~s}\), the device will crack and be rendered useless. What is the maximum volume expansion coefficient that the material you use to build the device can have?
A steel rod of length \(1.0000 \mathrm{~m}\) and cross-sectional area \(5.00 \cdot 10^{-4} \mathrm{~m}^{2}\) is placed snugly against two immobile end points. The rod is initially placed when the temperature is \(0^{\circ} \mathrm{C}\). Find the stress in the rod when the temperature rises to \(40.0^{\circ} \mathrm{C}\).
Which object has the higher temperature after being left outside for an entire winter night: a metal door knob or a rug? a) The metal door knob has the higher temperature. b) The rug has the higher temperature. c) Both have the same temperature. d) It depends on the outside temperature.
What do you think about this solution?
We value your feedback to improve our textbook solutions.