Chapter 17: Problem 12
The solar corona has a temperature of about \(1 \cdot 10^{6} \mathrm{~K}\). However, a spaceship flying in the corona will not be burned up. Why is this?
Chapter 17: Problem 12
The solar corona has a temperature of about \(1 \cdot 10^{6} \mathrm{~K}\). However, a spaceship flying in the corona will not be burned up. Why is this?
All the tools & learning materials you need for study success - in one app.
Get started for free\(\cdot 17.41\) A clock based on a simple pendulum is situated outdoors in Anchorage, Alaska. The pendulum consists of a mass of 1.00 kg that is hanging from a thin brass rod that is \(2.000 \mathrm{~m}\) long. The clock is calibrated perfectly during a summer day with an average temperature of \(25.0^{\circ} \mathrm{C}\). During the winter, when the average temperature over one 24 -h period is \(-20.0^{\circ} \mathrm{C}\), find the time elapsed for that period according to the simple pendulum clock.
For a class demonstration, your physics instructor uniformly heats a bimetallic strip that is held in a horizontal orientation. As a result, the bimetallic strip bends upward. This tells you that the coefficient of linear thermal expansion for metal T, on the top is _____ that of metal B, on the bottom. a) smaller than b) larger than c) equal to
In a thermometer manufacturing plant, a type of mercury thermometer is built at room temperature \(\left(20^{\circ} \mathrm{C}\right)\) to measure temperatures in the \(20^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) range, with \(\mathrm{a}\) \(1-\mathrm{cm}^{3}\) spherical reservoir at the bottom and a \(0.5-\mathrm{mm}\) inner diameter expansion tube. The wall thickness of the reservoir and tube is negligible, and the \(20^{\circ} \mathrm{C}\) mark is at the junction between the spherical reservoir and the tube. The tubes and reservoirs are made of fused silica, a transparent glass form of \(\mathrm{SiO}_{2}\) that has a very low linear expansion coefficient \((\alpha=\) \(\left.0.4 \cdot 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right) .\) By mistake, the material used for one batch of thermometers was quartz, a transparent crystalline form of \(\mathrm{SiO}_{2}\) with a much higher linear expansion coefficient \(\left(\alpha=12.3 \cdot 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right) .\) Will the manufacturer have to scrap the batch, or will the thermometers work fine, within the expected uncertainty of \(5 \%\) in reading the temperature? The volume expansion coefficient of mercury is \(\beta=181 \cdot 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\).
a) Suppose a bimetallic strip is constructed of copper and steel strips of thickness \(1.0 \mathrm{~mm}\) and length \(25 \mathrm{~mm},\) and the temperature of the strip is reduced by \(5.0 \mathrm{~K}\). Determine the radius of curvature of the cooled strip (the radius of curvature of the interface between the two strips). b) If the strip is \(25 \mathrm{~mm}\) long, how far is the maximum deviation of the strip from the straight orientation?
A medical device used for handling tissue samples has two metal screws, one \(20.0 \mathrm{~cm}\) long and made from brass \(\left(\alpha_{\mathrm{b}}=18.9 \cdot 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right)\) and the other \(30.0 \mathrm{~cm}\) long and made from aluminum \(\left(\alpha_{\mathrm{a}}=23.0 \cdot 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right)\). A gap of \(1.00 \mathrm{~mm}\) exists between the ends of the screws at \(22.0^{\circ} \mathrm{C}\). At what temperature will the two screws touch?
What do you think about this solution?
We value your feedback to improve our textbook solutions.