Chapter 16: Problem 26
Compare the intensity of sound at the pain level, \(120 \mathrm{~dB}\), with that at the whisper level, \(20 \mathrm{~dB}\).
Chapter 16: Problem 26
Compare the intensity of sound at the pain level, \(120 \mathrm{~dB}\), with that at the whisper level, \(20 \mathrm{~dB}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeTwo vehicles carrying speakers that produce a tone of frequency \(1000.0 \mathrm{~Hz}\) are moving directly toward each other. Vehicle \(\mathrm{A}\) is moving at \(10.00 \mathrm{~m} / \mathrm{s}\) and vehicle \(\mathrm{B}\) is moving at \(20.00 \mathrm{~m} / \mathrm{s}\). Assume the speed of sound in air is \(343.0 \mathrm{~m} / \mathrm{s}\), and find the frequencies that the driver of each vehicle hears.
A source traveling to the right at a speed of \(10.00 \mathrm{~m} / \mathrm{s}\) emits a sound wave at a frequency of \(100.0 \mathrm{~Hz}\). The sound wave bounces off of a reflector, which is traveling to the left at a speed of \(5.00 \mathrm{~m} / \mathrm{s}\). What is the frequency of the reflected sound wave detected by a listener back at the source?
A bugle can be represented by a cylindrical pipe of length \(L=1.35 \mathrm{~m} .\) Since the ends are open, the standing waves produced in the bugle have antinodes at the open ends, where the air molecules move back and forth the most. Calculate the longest three wavelengths of standing waves inside the bugle. Also calculate the three lowest frequencies and the three longest wavelengths of the sound that is produced in the air around the bugle.
A policeman with a very good ear and a good understanding of the Doppler effect stands on the shoulder of a freeway assisting a crew in a 40 -mph work zone. He notices a car approaching that is honking its horn. As the car gets closer, the policeman hears the sound of the horn as a distinct \(\mathrm{B} 4\) tone \((494 \mathrm{~Hz}) .\) The instant the car passes by, he hears the sound as a distinct \(\mathrm{A} 4\) tone \((440 \mathrm{~Hz}) .\) He immediately jumps on his motorcycle, stops the car, and gives the motorist a speeding ticket. Explain his reasoning.
Two sources, \(A\) and \(B\), emit a sound of a certain wavelength. The sound emitted from both sources is detected at a point away from the sources. The sound from source \(\mathrm{A}\) is a distance \(d\) from the observation point, whereas the sound from source \(\mathrm{B}\) has to travel a distance of \(3 \lambda .\) What is the largest value of the wavelength, in terms of \(d\), for the maximum sound intensity to be detected at the observation point? If \(d=10.0 \mathrm{~m}\) and the speed of sound is \(340 \mathrm{~m} / \mathrm{s}\), what is the frequency of the emitted sound?
What do you think about this solution?
We value your feedback to improve our textbook solutions.