Chapter 14: Problem 44
A mass \(M=0.460 \mathrm{~kg}\) moves with an initial speed \(v=3.20 \mathrm{~m} / \mathrm{s}\) on a level frictionless air track. The mass is initially a distance \(D=0.250 \mathrm{~m}\) away from a spring with \(k=\) \(840 \mathrm{~N} / \mathrm{m}\), which is mounted rigidly at one end of the air track. The mass compresses the spring a maximum distance \(d\), before reversing direction. After bouncing off the spring the mass travels with the same speed \(v\), but in the opposite dircction. a) Determine the maximum distance that the spring is compressed. b) Find the total elapsed time until the mass returns to its starting point. (Hint: The mass undergoes a partial cycle of simple harmonic motion while in contact with the spring.)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.