Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A beaker is filled with water to the rim. Gently placing a plastic toy duck in the beaker causes some of the water to spill out. The weight of the beaker with the duck floating in it is a) greater than the weight before adding the duck. b) less than the weight before adding the duck. c) the same as the weight before adding the duck. d) greater or less than the weight before the duck was added, depending on the weight of the duck.

Short Answer

Expert verified
Answer: c) The weight of the beaker with the duck floating in it is the same as the weight before adding the duck.

Step by step solution

01

Evaluating Option A

Option A suggests that the weight of the beaker with the duck floating in it is greater than the weight before adding the duck. This is not true, as the duck displaces its own weight in the water, and some of the water spills out. The weight of the beaker after placing the duck is equal to the weight of the beaker without the duck plus the weight of the duck itself.
02

Evaluating Option B

Option B suggests that the weight of the beaker with the duck floating in it is less than the weight before adding the duck. This is also not true, as we have already mentioned that the duck displaces its own weight in water, and the beaker's weight after placing the duck would be equal to its initial weight plus the weight of the duck.
03

Evaluating Option C

Option C suggests that the weight of the beaker with the duck floating in it is the same as the weight before adding the duck. This is the correct answer. According to Archimedes' Principle, a floating object displaces its own weight in the fluid it is floating in. So, the weight of the water spilled by the duck is equal to the weight of the duck. Thus, the weight before and after adding the duck remains the same.
04

Evaluating Option D

Option D suggests that the weight of the beaker with the duck floating in it could be either greater or less than the weight before the duck was added, depending on the weight of the duck. This option is incorrect, as we have already established that the weight of the beaker will be the same before and after placing the duck, regardless of the duck's weight. In conclusion, the correct answer is: c) The weight of the beaker with the duck floating in it is the same as the weight before adding the duck.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A box with a volume \(V=0.0500 \mathrm{~m}^{3}\) lies at the bottom of a lake whose water has a density of \(1.00 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\). How much force is required to lift the box, if the mass of the box is (a) \(1000 . \mathrm{kg},\) (b) \(100 . \mathrm{kg},\) and \((\mathrm{c}) 55.0 \mathrm{~kg} ?\)

A scuba diver must decompress after a deep dive to allow excess nitrogen to exit safely from his bloodstream. The length of time required for decompression depends on the total change in pressure that the diver experienced. Find this total change in pressure for a diver who starts at a depth of \(d=20.0 \mathrm{~m}\) in the ocean (density of seawater \(\left.=1024 \mathrm{~kg} / \mathrm{m}^{3}\right)\) and then travels aboard a small plane (with an unpressurized cabin) that rises to an altitude of \(h=5000 . \mathrm{m}\) above sea level.

The Hindenburg, the German zeppelin that caught fire in 1937 while docking in Lakehurst, New Jersey, was a rigid duralumin-frame balloon filled with \(2.000 \cdot 10^{5} \mathrm{~m}^{3}\) of hydrogen. The Hindenburg's useful lift (beyond the weight of the zeppelin structure itself) is reported to have been \(1.099 \cdot 10^{6} \mathrm{~N}(\) or \(247,000 \mathrm{lb}) .\) Use \(\rho_{\text {air }}=1.205 \mathrm{~kg} / \mathrm{m}^{3}, \rho_{\mathrm{H}}=\) \(0.08988 \mathrm{~kg} / \mathrm{m}^{3}\) and \(\rho_{\mathrm{He}}=0.1786 \mathrm{~kg} / \mathrm{m}^{3}\) a) Calculate the weight of the zeppelin structure (without the hydrogen gas). b) Compare the useful lift of the (highly flammable) hydrogen-filled Hindenburg with the useful lift the Hindenburg would have had had it been filled with (nonflammable) helium, as originally planned.

Salt water has a greater density than freshwater. A boat floats in both freshwater and salt water. The buoyant force on the boat in salt water is that in freshwater. a) equal to b) smaller than c) larger than

Given two springs of identical size and shape, one made of steel and the other made of aluminum, which has the higher spring constant? Why? Does the difference depend more on the shear modulus or the bulk modulus of the material?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free