Chapter 13: Problem 1
Salt water has a greater density than freshwater. A boat floats in both freshwater and salt water. The buoyant force on the boat in salt water is that in freshwater. a) equal to b) smaller than c) larger than
Chapter 13: Problem 1
Salt water has a greater density than freshwater. A boat floats in both freshwater and salt water. The buoyant force on the boat in salt water is that in freshwater. a) equal to b) smaller than c) larger than
All the tools & learning materials you need for study success - in one app.
Get started for freeA tourist of mass \(60.0 \mathrm{~kg}\) notices a chest with a short chain attached to it at the bottom of the ocean. Imagining the riches it could contain, he decides to dive for the chest. He inhales fully, thus setting his average body density to \(945 \mathrm{~kg} / \mathrm{m}^{3}\), jumps into the ocean (with saltwater density = \(1020 \mathrm{~kg} / \mathrm{m}^{3}\) ), grabs the chain, and tries to pull the chest to the surface. Unfortunately, the chest is too heavy and will not move. Assume that the man does not touch the bottom. a) Draw the man's free-body diagram, and determine the tension on the chain. b) What mass (in kg) has a weight that is equivalent to the tension force in part (a)? c) After realizing he cannot free the chest, the tourist releases the chain. What is his upward acceleration (assuming that he simply allows the buoyant force to lift him up to the surface)?
A box with a volume \(V=0.0500 \mathrm{~m}^{3}\) lies at the bottom of a lake whose water has a density of \(1.00 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\). How much force is required to lift the box, if the mass of the box is (a) \(1000 . \mathrm{kg},\) (b) \(100 . \mathrm{kg},\) and \((\mathrm{c}) 55.0 \mathrm{~kg} ?\)
In a horizontal water pipe that narrows to a smaller radius, the velocity of the water in the section with the smaller radius will be larger. What happens to the pressure? a) The pressure will be the same in both the wider and narrower sections of the pipe. b) The pressure will be higher in the narrower section of the pipe. c) The pressure will be higher in the wider section of the pipe d) It is impossible to tell.
A sealed vertical cylinder of radius \(R\) and height \(h=0.60 \mathrm{~m}\) is initially filled halfway with water, and the upper half is filled with air. The air is initially at standard atmospheric pressure, \(p_{0}=1.01 \cdot 10^{5} \mathrm{~Pa}\). A small valve at the bottom of the cylinder is opened, and water flows out of the cylinder until the reduced pressure of the air in the upper part of the cylinder prevents any further water from escaping. By what distance is the depth of the water lowered? (Assume that the temperature of water and air do not change and that no air leaks into the cylinder.)
An open-topped tank completely filled with water has a release valve near its bottom. The valve is \(1.0 \mathrm{~m}\) below the water surface. Water is released from the valve to power a turbine, which generates electricity. The area of the top of the tank, \(A_{\mathrm{p}}\) is 10 times the cross-sectional area, \(A_{\mathrm{y}}\) of the valve opening. Calculate the speed of the water as it exits the valve. Neglect friction and viscosity, In addition, calculate the speed of a drop of water released from rest at \(h=1.0 \mathrm{~m}\) when it reaches the elevation of the valve, Compare the two speeds.
What do you think about this solution?
We value your feedback to improve our textbook solutions.