Chapter 12: Problem 22
Compare the magnitudes of the gravitational force that the Earth exerts on the Moon and the gravitational force that the Moon exerts on the Earth. Which is larger?
Chapter 12: Problem 22
Compare the magnitudes of the gravitational force that the Earth exerts on the Moon and the gravitational force that the Moon exerts on the Earth. Which is larger?
All the tools & learning materials you need for study success - in one app.
Get started for freeEris, the largest dwarf planet known in the Solar System, has a radius \(R=1200 \mathrm{~km}\) and an acceleration due to gravity on its surface of magnitude \(g=0.77 \mathrm{~m} / \mathrm{s}^{2}\) a) Use these numbers to calculate the escape speed from the surface of Eris. b) If an object is fired directly upward from the surface of Eris with half of this escape speed, to what maximum height above the surface will the object rise? (Assume that Eris has no atmosphere and negligible rotation.
Standing on the surface of a small spherical moon whose radius is \(6.30 \cdot 10^{4} \mathrm{~m}\) and whose mass is \(8.00 \cdot 10^{18} \mathrm{~kg}\) an astronaut throws a rock of mass 2.00 kg straight upward with an initial speed \(40.0 \mathrm{~m} / \mathrm{s}\). (This moon is too small to have an atmosphere.) What maximum height above the surface of the moon will the rock reach?
a) By what percentage does the gravitational potential energy of the Earth change between perihelion and aphelion? (Assume the Earth's potential energy would be zero if it is moved to a very large distance away from the Sun.) b) By what percentage does the kinetic energy of the Earth change between perihelion and aphelion?
Some of the deepest mines in the world are in South Africa and are roughly \(3.5 \mathrm{~km}\) deep. Consider the Earth to be a uniform sphere of radius \(6370 \mathrm{~km}\). a) How deep would a mine shaft have to be for the gravitational acceleration at the bottom to be reduced by a factor of 2 from its value on the Earth's surface? b) What is the percentage difference in the gravitational acceleration at the bottom of the \(3.5-\mathrm{km}\) -deep shaft relative to that at the Earth's mean radius? That is, what is the value of \(\left(a_{\text {surf }}-a_{3,5 \mathrm{~km}}\right) / a_{\text {surf }} ?\)
A planet with a mass of \(7.00 \cdot 10^{21} \mathrm{~kg}\) is in a circular orbit around a star with a mass of \(2.00 \cdot 10^{30} \mathrm{~kg} .\) The planet has an orbital radius of \(3.00 \cdot 10^{10} \mathrm{~m}\). a) What is the linear orbital velocity of the planet? b) What is the period of the planet's orbit? c) What is the total mechanical energy of the planet?
What do you think about this solution?
We value your feedback to improve our textbook solutions.