Chapter 12: Problem 15
Three asteroids, located at points \(P_{1}, P_{2},\) and \(P_{3}\), which are not in a line, and having known masses \(m_{1}, m_{2}\), and \(m_{3}\), interact with one another through their mutual gravitational forces only; they are isolated in space and do not interact with any other bodies. Let \(\sigma\) denote the axis going through the center of mass of the three asteroids, perpendicular to the triangle \(P_{1} P_{2} P_{3} .\) What conditions should the angular velocity \(\omega\) of the system (around the axis \(\sigma\) ) and the distances $$ P_{1} P_{2}=a_{12}, \quad P_{2} P_{3}=a_{23}, \quad P_{1} P_{3}=a_{13} $$ fulfill to allow the shape and size of the triangle \(P_{1} P_{2} P_{3}\) to remain unchanged during the motion of the system? That is, under what conditions does the system rotate around the axis \(\sigma\) as a rigid body?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.