Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Which of the following are in static equilibrium? a) a pendulum at the top of its swing b) a merry-go-round spinning at constant angular velocity c) a projectile at the top of its trajectory (with zero velocity) d) all of the above e) none of the above

Short Answer

Expert verified
a) A pendulum at the top of its swing b) A merry-go-round spinning at constant angular velocity c) A projectile at the top of its trajectory (with zero velocity) d) All of the above e) None of the above Answer: e) None of the above

Step by step solution

01

Scenario A: A pendulum at the top of its swing

In this scenario, the pendulum is at the top of its swing, which means that it is momentarily at rest. However, gravity is still acting on the pendulum, causing a downward force. Since there is a net force acting on the pendulum (gravity), it is not in static equilibrium.
02

Scenario B: A merry-go-round spinning at constant angular velocity

In this case, the merry-go-round is spinning at a constant angular velocity, which means there is no net torque acting on it (since it's not accelerating). However, it is not in translational equilibrium since it is constantly moving (rotating). Therefore, this scenario is not in static equilibrium.
03

Scenario C: A projectile at the top of its trajectory (with zero velocity)

At the top of its trajectory, a projectile has zero velocity, which means it is momentarily at rest. However, just like in scenario A, gravity is still acting on the projectile, causing a downward force. This results in a net force acting on the object, and hence, this scenario is also not in static equilibrium.
04

Conclusion

After analyzing all the given scenarios, it's clear that none of them are in static equilibrium. Consequently, the correct answer is option e) none of the above.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two uniform planks, each of mass \(m\) and length \(L,\) are connected by a hinge at the top and by a chain of negligible mass attached at their centers, as shown in the figure. The assembly will stand upright, in the shape of an \(A,\) on a frictionless surface without collapsing. As a function of the length of the chain, find each of the following: a) the tension in the chain, b) the force on the hinge of each plank, and c) the force of the ground on each plank.

An object is restricted to movement in one dimension. Its position is specified along the \(x\) -axis. The potential energy of the object as a function of its position is given by \(U(x)=a\left(x^{4}-2 b^{2} x^{2}\right),\) where \(a\) and \(b\) represent positive numbers. Determine the location(s) of any equilibrium point(s), and classify the equilibrium at each point as stable, unstable, or neutral.

A \(5.00-\mathrm{m}\) -long board of mass \(50.0 \mathrm{~kg}\) is used as a seesaw. On the left end of the seesaw sits a 45.0 -kg girl, and on the right end sits a 60.0 -kg boy. Determine the position of the pivot point for static equilibrium.

A construction supervisor of mass \(M=92.1 \mathrm{~kg}\) is standing on a board of mass \(m=27.5 \mathrm{~kg} .\) Two sawhorses at a distance \(\ell=3.70 \mathrm{~m}\) apart support the board. If the man stands a distance \(x_{1}=1.07 \mathrm{~m}\) away from the left-hand sawhorse as shown in the figure, what is the force that the board exerts on that sawhorse?

In preparation for a demonstration on conservation of energy, a professor attaches a 5.00 -kg bowling ball to a 4.00 -m-long rope. He pulls the ball \(20.0^{\circ}\) away from the vertical and holds the ball while he discusses the physics principles involved. Assuming that the force he exerts on the ball is entirely in the horizontal direction, find the tension in the rope and the force the professor is exerting on the ball.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free