Chapter 10: Problem 77
A student of mass \(52 \mathrm{~kg}\) wants to measure the mass of a playground merry-go-round, which consists of a solid metal disk of radius \(R=1.5 \mathrm{~m}\) that is mounted in a horizontal position on a low-friction axle. She tries an experiment: She runs with speed \(v=6.8 \mathrm{~m} / \mathrm{s}\) toward the outer rim of the merry-go-round and jumps on to the outer rim, as shown in the figure. The merry-go-round is initially at rest before the student jumps on and rotates at \(1.3 \mathrm{rad} / \mathrm{s}\) immediately after she jumps on. You may assume that the student's mass is concentrated at a point. a) What is the mass of the merry-go-round? b) If it takes 35 s for the merry-go-round to come to a stop after the student has jumped on, what is the average torque due to friction in the axle? c) How many times does the merry-go-round rotate before it stops, assuming that the torque due to friction is constant?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.