Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider a cylinder and a hollow cylinder, rotating about an axis going through their centers of mass. If both objects have the same mass and the same radius, which object will have the larger moment of inertia? a) The moment of inertia will be the same for both objects. b) The solid cylinder will have the larger moment of inertia because its mass is uniformly distributed. c) The hollow cylinder will have the larger moment of inertia because its mass is located away from the axis of rotation.

Short Answer

Expert verified
Explain your answer. Answer: The hollow cylinder will have a larger moment of inertia because its mass is located away from the axis of rotation. The moment of inertia of the solid cylinder is half the moment of inertia of the hollow cylinder.

Step by step solution

01

Recall the moment of inertia formulas for solid and hollow cylinders

To compare the moment of inertia of both objects, we need to recall their formulas. The moment of inertia (I) of a solid cylinder is given by: \[I_\text{solid} = \frac{1}{2}MR^2,\] where M is the mass of the cylinder and R is its radius. For a hollow cylinder, the moment of inertia is given by: \[I_\text{hollow} = MR^2.\]
02

Compare the moment of inertia formulas

Now, we can compare the moments of inertia of the solid and hollow cylinders: \[\frac{I_\text{solid}}{I_\text{hollow}} = \frac{\frac{1}{2}MR^2}{MR^2} = \frac{1}{2},\] meaning that the moment of inertia of the solid cylinder is half the moment of inertia of the hollow cylinder.
03

Choose the correct answer

Since the moment of inertia of the hollow cylinder is larger than that of the solid cylinder, the correct answer is (c) The hollow cylinder will have the larger moment of inertia because its mass is located away from the axis of rotation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two solid steel balls, one small and one large, are on an inclined plane. The large ball has a diameter twice as large as that of the small ball. Starting from rest, the two balls roll without slipping down the incline until their centers of mass are \(1 \mathrm{~m}\) below their starting positions. What is the speed of the large ball \(\left(v_{\mathrm{L}}\right)\) relative to that of the small ball \(\left(v_{\mathrm{S}}\right)\) after rolling \(1 \mathrm{~m} ?\) a) \(v_{\mathrm{L}}=4 v_{\mathrm{S}}\) d) \(v_{\mathrm{L}}=0.5 v_{\mathrm{S}}\) b) \(v_{\mathrm{L}}=2 v_{\mathrm{S}}\) e) \(v_{\mathrm{L}}=0.25 v_{\mathrm{S}}\) c) \(v_{\mathrm{L}}=v_{\mathrm{S}}\)

In another race, a solid sphere and a thin ring roll without slipping from rest down a ramp that makes angle \(\theta\) with the horizontal. Find the ratio of their accelerations, \(a_{\text {ring }} / a_{\text {sphere }}\)

A figure skater draws her arms in during a final spin. Since angular momentum is conserved, her angular velocity will increase. Is her rotational kinetic energy conserved during this process? If not, where does the extra energy come from or go to?

A uniform rod of mass \(M=250.0 \mathrm{~g}\) and length \(L=50.0 \mathrm{~cm}\) stands vertically on a horizontal table. It is released from rest to fall. a) What forces are acting on the rod? b) Calculate the angular speed of the rod, the vertical acceleration of the moving end of the rod, and the normal force exerted by the table on the rod as it makes an angle \(\theta=45.0^{\circ}\) with respect to the vertical. c) If the rod falls onto the table without slipping, find the linear acceleration of the end point of the rod when it hits the table and compare it with \(g\).

A force, \(\vec{F}=(2 \hat{x}+3 \hat{y}) \mathrm{N},\) is applied to an object at a point whose position vector with respect to the pivot point is \(\vec{r}=(4 \hat{x}+4 \hat{y}+4 \hat{z}) \mathrm{m} .\) Calculate the torque created by the force about that pivot point.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free