Chapter 10: Problem 30
Why does a figure skater pull in her arms while increasing her angular velocity in a tight spin?
Chapter 10: Problem 30
Why does a figure skater pull in her arms while increasing her angular velocity in a tight spin?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn another race, a solid sphere and a thin ring roll without slipping from rest down a ramp that makes angle \(\theta\) with the horizontal. Find the ratio of their accelerations, \(a_{\text {ring }} / a_{\text {sphere }}\)
A uniform solid sphere of mass \(M\) and radius \(R\) is rolling without sliding along a level plane with a speed \(v=3.00 \mathrm{~m} / \mathrm{s}\) when it encounters a ramp that is at an angle \(\theta=23.0^{\circ}\) above the horizontal. Find the maximum distance that the sphere travels up the ramp in each case: a) The ramp is frictionless, so the sphere continues to rotate with its initial angular speed until it reaches its maximum height. b) The ramp provides enough friction to prevent the sphere from sliding, so both the linear and rotational motion stop (instantaneously).
Using the conservation of mechanical energy, calculate the final speed and the acceleration of a cylindrical object of mass \(M\) and radius \(R\) after it rolls a distance \(s\) without slipping along an inclined plane of angle \(\theta\) with respect to the horizontal
A figure skater draws her arms in during a final spin. Since angular momentum is conserved, her angular velocity will increase. Is her rotational kinetic energy conserved during this process? If not, where does the extra energy come from or go to?
A solid sphere of radius \(R\) and mass \(M\) is placed at a height \(h_{0}\) on an inclined plane of slope \(\theta\). When released, it rolls without slipping to the bottom of the incline. Next, a cylinder of same mass and radius is released on the same incline. From what height \(h\) should it be released in order to have the same speed as the sphere at the bottom?
What do you think about this solution?
We value your feedback to improve our textbook solutions.