Chapter 10: Problem 19
In another race, a solid sphere and a thin ring roll without slipping from rest down a ramp that makes angle \(\theta\) with the horizontal. Find the ratio of their accelerations, \(a_{\text {ring }} / a_{\text {sphere }}\)
Chapter 10: Problem 19
In another race, a solid sphere and a thin ring roll without slipping from rest down a ramp that makes angle \(\theta\) with the horizontal. Find the ratio of their accelerations, \(a_{\text {ring }} / a_{\text {sphere }}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA child builds a simple cart consisting of a \(60.0 \mathrm{~cm}\) by \(1.20 \mathrm{~m}\) sheet of plywood of mass \(8.00 \mathrm{~kg}\) and four wheels, each \(20.0 \mathrm{~cm}\) in diameter and with a mass of \(2.00 \mathrm{~kg}\). It is released from the top of a \(15.0^{\circ}\) incline that is \(30.0 \mathrm{~m}\) long. Find the speed at the bottom. Assume that the wheels roll along the incline without slipping and that friction between the wheels and their axles can be neglected.
A projectile of mass \(m\) is launched from the origin at speed \(v_{0}\) at angle \(\theta_{0}\) above the horizontal. Air resistance is negligible. a) Calculate the angular momentum of the projectile about the origin. b) Calculate the rate of change of this angular momentum. c) Calculate the torque acting on the projectile, about the origin, during its flight.
A disk of clay is rotating with angular velocity \(\omega .\) A blob of clay is stuck to the outer rim of the disk, and it has a mass \(\frac{1}{10}\) of that of the disk. If the blob detaches and flies off tangent to the outer rim of the disk, what is the angular velocity of the disk after the blob separates? a) \(\frac{5}{6} \omega\) b) \(\frac{10}{11} \omega\) c) \(\omega\) d) \(\frac{11}{10} \omega\) e) \(\frac{6}{5} \omega\)
To turn a motorcycle to the right, you do not turn the handlebars to the right, but instead slightly to the left. Explain, as precisely as you can, how this counter-steering turns the motorcycle in the desired direction. (Hint: The wheels of a motorcycle in motion have a great deal of angular momentum.)
In experiments at the Princeton Plasma Physics Laboratory, a plasma of hydrogen atoms is heated to over 500 million degrees Celsius (about 25 times hotter than the center of the Sun) and confined for tens of milliseconds by powerful magnetic fields \((100,000\) times greater than the Earth's magnetic field). For each experimental run, a huge amount of energy is required over a fraction of a second, which translates into a power requirement that would cause a blackout if electricity from the normal grid were to be used to power the experiment. Instead, kinetic energy is stored in a colossal flywheel, which is a spinning solid cylinder with a radius of \(3.00 \mathrm{~m}\) and mass of \(1.18 \cdot 10^{6} \mathrm{~kg}\). Electrical energy from the power grid starts the flywheel spinning, and it takes 10.0 min to reach an angular speed of \(1.95 \mathrm{rad} / \mathrm{s}\). Once the flywheel reaches this angular speed, all of its energy can be drawn off very quickly to power an experimental run. What is the mechanical energy stored in the flywheel when it spins at \(1.95 \mathrm{rad} / \mathrm{s}\) ? What is the average torque required to accelerate the flywheel from rest to \(1.95 \mathrm{rad} / \mathrm{s}\) in \(10.0 \mathrm{~min} ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.