Chapter 9: Problem 94
A gas-turbine power plant operates on a modified Brayton cycle shown in the figure with an overall pressure ratio of \(8 .\) Air enters the compressor at \(0^{\circ} \mathrm{C}\) and \(100 \mathrm{kPa}\) The maximum cycle temperature is 1500 K. The compressor and the turbines are isentropic. The high pressure turbine develops just enough power to run the compressor. Assume constant properties for air at \(300 \mathrm{K}\) with \(c_{v}=0.718 \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}\) \(c_{p}=1.005 \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}, R=0.287 \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}, k=1.4\) (a) Sketch the \(T\) -s diagram for the cycle. Label the data states. (b) Determine the temperature and pressure at state \(4,\) the exit of the high pressure turbine. (c) If the net power output is \(200 \mathrm{MW}\), determine mass flow rate of the air into the compressor, in \(\mathrm{kg} / \mathrm{s}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.