Chapter 9: Problem 81
A gas-turbine power plant operates on the simple Brayton cycle with air as the working fluid and delivers \(32 \mathrm{MW}\) of power. The minimum and maximum temperatures in the cycle are 310 and \(900 \mathrm{K},\) and the pressure of air at the compressorexit is 8 times the value at the compressor inlet. Assuming an isentropic efficiency of 80 percent for the compressor and 86 percent for the turbine, determine the mass flow rate of air through the cycle. Account for the variation of specific heats with temperature.
Short Answer
Step by step solution
Actual Temperature after Compression
Actual Temperature after Expansion
Calculate Work and Heat Interaction Parameters
Calculate Mass Flow Rate
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Isentropic Efficiency
\text{\text{\text{\text{{\(\text{\text{\text{\text{{\)\text{\text{{\text{\text{\text{{\text{\text{\text{\text{{\(\text{\text{{\text{{\text{\text{{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{\text{{{eta_c \text{\text{\text{\text{{\)\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{\text{\text{{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{\text{{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{\text{{\text{\text{{\text{\text{{\text{\text{{\text{\text{\text{{\text{\text{\text{{\text{\text{{\text{\text{{\text{\text{\text{\text{\text{\text{{\text{\text{\text{\text{\text{\text{{{= \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{\text{{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{\text{{\(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{\text{{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{\text{\text{\text{{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{\text{{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{\text{\text{\text{\text{{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{\text{\text{\text{\text{\text{{{T_{2s}-T_1}{T_{2a}-T_1}}\text{\text{\text{\text{\text{\text{\text{{\)\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{\text{\text{{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{\text{\text{\text{{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{{\text{\text{{\text{{\text{\text{\text{\text{\text{|$. This is used to ascertain the actual temperature increase on the cold side of a Brayton cycle. Similarly, for a turbine, isentropic efficiency is calculated by the ratio of the actual work output to the work output of an ideal isentropic turbine. Keeping these efficiencies in mind is crucial when calculating the mass flow rate in a gas turbine power plant, as it affects the overall energy balance and ultimately the performance evaluation.
Gas Turbine Power Plant
Specific Heats of Air
In the context of the Brayton cycle, variations in specific heats with temperature can't be ignored. Air, as an ideal gas, has specific heats that vary with temperature; hence, it's important to use correct values for cp when calculating the energy transfer during the isentropic processes. Accurate values ensure precise calculations of work and heat transfer, leading to an accurate determination of the thermal efficiency and performance of the power plant.
Thermodynamics of Brayton Cycle
The thermodynamic efficiency of the Brayton cycle depends on the temperatures and pressures at various points in the cycle, as well as on the isentropic efficiencies of the turbine and compressor. When solving for the mass flow rate, it's essential to calculate the actual work interactions for both the compressor and the turbine, considering the real (not ideal) process efficiencies. Armed with the temperature terms and specific heats, engineers use these calculated dynamics to determine the performance of the cycle—reflecting the critical importance of thermodynamics in the design and operation of modern gas turbine power plants.