Chapter 9: Problem 4
What does the area enclosed by the cycle represent on a \(P\) - \(V\) diagram? How about on a \(T\) -s diagram?
Chapter 9: Problem 4
What does the area enclosed by the cycle represent on a \(P\) - \(V\) diagram? How about on a \(T\) -s diagram?
All the tools & learning materials you need for study success - in one app.
Get started for freeAir in an ideal Diesel cycle is compressed from 2 to \(0.13 \mathrm{L},\) and then it expands during the constant pressure heat addition process to 0.30 L. Under cold air standard conditions, the thermal efficiency of this cycle is (a) 41 percent (b) 59 percent \((c) 66\) percent \((d) 70\) percent \((e) 78\) percent
Consider an ideal gas-turbine cycle with two stages of compression and two stages of expansion. The pressure ratio across each stage of the compressor and turbine is 3 The air enters each stage of the compressor at \(300 \mathrm{K}\) and each stage of the turbine at \(1200 \mathrm{K}\). Determine the back work ratio and the thermal efficiency of the cycle, assuming \((a)\) no regenerator is used and \((b)\) a regenerator with 75 percent effectiveness is used. Use variable specific heats.
Consider an aircraft powered by a turbojet engine that has a pressure ratio of \(9 .\) The aircraft is stationary on the ground, held in position by its brakes. The ambient air is at \(7^{\circ} \mathrm{C}\) and \(95 \mathrm{kPa}\) and enters the engine at a rate of \(20 \mathrm{kg} / \mathrm{s}\) The jet fuel has a heating value of \(42,700 \mathrm{kJ} / \mathrm{kg},\) and it is burned completely at a rate of \(0.5 \mathrm{kg} / \mathrm{s}\). Neglecting the effect of the diffuser and disregarding the slight increase in mass at the engine exit as well as the inefficiencies of engine components, determine the force that must be applied on the brakes to hold the plane stationary.
A simple ideal Brayton cycle without regeneration is modified to incorporate multistage compression with intercooling and multistage expansion with reheating, without changing the pressure or temperature limits of the cycle. As a result of these two modifications, (a) Does the net work output increase, decrease, or remain the same? (b) Does the back work ratio increase, decrease, or remain the same? \((c) \quad\) Does the thermal efficiency increase, decrease, or remain the same? (d) Does the heat rejected increase, decrease, or remain the same?
An ideal Brayton cycle has a net work output of \(150 \mathrm{kJ} / \mathrm{kg}\) and a back work ratio of \(0.4 .\) If both the turbine and the compressor had an isentropic efficiency of 85 percent, the net work output of the cycle would be \((a) 74 \mathrm{kJ} / \mathrm{kg}\) \((b) 95 \mathrm{kJ} / \mathrm{kg}\) \((c) 109 \mathrm{kJ} / \mathrm{kg}\) \((d) 128 \mathrm{kJ} / \mathrm{kg}\) \((e) 177 \mathrm{kJ} / \mathrm{kg}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.