Chapter 9: Problem 31
An ideal Otto cycle has a compression ratio of \(10.5,\) takes in air at \(90 \mathrm{kPa}\) and \(40^{\circ} \mathrm{C},\) and is repeated 2500 times per minute.
Chapter 9: Problem 31
An ideal Otto cycle has a compression ratio of \(10.5,\) takes in air at \(90 \mathrm{kPa}\) and \(40^{\circ} \mathrm{C},\) and is repeated 2500 times per minute.
All the tools & learning materials you need for study success - in one app.
Get started for freeAn ideal Stirling cycle filled with air uses a \(75^{\circ} \mathrm{F}\) energy reservoir as a sink. The engine is designed so that the maximum air volume is \(0.5 \mathrm{ft}^{3},\) the minimum air volume is \(0.06 \mathrm{ft}^{3},\) and the minimum pressure is 15 psia. It is to be operated such that the engine produces 2 Btu of net work when 5 Btu of heat are transferred externally to the engine. Determine the temperature of the energy source, the amount of air contained in the engine, and the maximum air pressure during the cycle.
A Brayton cycle with regeneration using air as the working fluid has a pressure ratio of \(7 .\) The minimum and maximum temperatures in the cycle are 310 and 1150 K. Assuming an isentropic efficiency of 75 percent for the compressor and 82 percent for the turbine and an effectiveness of 65 percent for the regenerator, determine \((a)\) the air temperature at the turbine exit, \((b)\) the net work output, and \((c)\) the thermal efficiency.
A Carnot cycle operates between the temperature limits of 300 and \(2000 \mathrm{K},\) and produces \(600 \mathrm{kW}\) of net power. The rate of entropy change of the working fluid during the heat addition process is \((a) 0\) (b) \(0.300 \mathrm{kW} / \mathrm{K}\) \((c) 0.353 \mathrm{kW} / \mathrm{K}\) \((d) 0.261 \mathrm{kW} / \mathrm{K}\) \((e) 2.0 \mathrm{kW} / \mathrm{K}\)
Consider an ideal Brayton cycle executed between the pressure limits of 1200 and \(100 \mathrm{kPa}\) and temperature limits of 20 and \(1000^{\circ} \mathrm{C}\) with argon as the working fluid. The net work output of the cycle is \((a) 68 \mathrm{kJ} / \mathrm{kg}\) \((b) 93 \mathrm{kJ} / \mathrm{kg}\) \((c) 158 \mathrm{kJ} / \mathrm{kg}\) \((d) 186 \mathrm{kJ} / \mathrm{kg}\) \((e) 310 \mathrm{kJ} / \mathrm{kg}\)
In an ideal Otto cycle, air is compressed from \(1.20 \mathrm{kg} / \mathrm{m}^{3}\) and 2.2 to \(0.26 \mathrm{L},\) and the net work output of the cycle is \(440 \mathrm{kJ} / \mathrm{kg} .\) The mean effective pressure (MEP) for this cycle is \((a) 612 \mathrm{kPa}\) \((b) 599 \mathrm{kPa}\) \((c) 528 \mathrm{kPa}\) \((d) 416 \mathrm{kPa}\) \((e) 367 \mathrm{kPa}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.