Chapter 9: Problem 3
How does the thermal efficiency of an ideal cycle, in general, compare to that of a Carnot cycle operating between the same temperature limits?
Chapter 9: Problem 3
How does the thermal efficiency of an ideal cycle, in general, compare to that of a Carnot cycle operating between the same temperature limits?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a simple Brayton cycle using air as the working fluid; has a pressure ratio of \(12 ;\) has a maximum cycle temperature of \(600^{\circ} \mathrm{C} ;\) and operates the compressor inlet at \(100 \mathrm{kPa}\) and \(15^{\circ} \mathrm{C} .\) Which will have the greatest impact on the back-work ratio: a compressor isentropic efficiency of 80 percent or a turbine isentropic efficiency of 80 percent? Use constant specific heats at room temperature.
A gas turbine for an automobile is designed with a regenerator. Air enters the compressor of this engine at \(100 \mathrm{kPa}\) and \(30^{\circ} \mathrm{C}\). The compressor pressure ratio is \(10 ;\) the maximum cycle temperature is \(800^{\circ} \mathrm{C} ;\) and the cold air stream leaves the regenerator \(10^{\circ} \mathrm{C}\) cooler than the hot air stream at the inlet of the regenerator. Assuming both the compressor and the turbine to be isentropic, determine the rates of heat addition and rejection for this cycle when it produces 115 kW. Use constant specific heats at room temperature.
A gas-turbine plant operates on the regenerative Brayton cycle with two stages of reheating and two-stages of intercooling between the pressure limits of 100 and 1200 kPa. The working fluid is air. The air enters the first and the second stages of the compressor at \(300 \mathrm{K}\) and \(350 \mathrm{K},\) respectively, and the first and the second stages of the turbine at \(1400 \mathrm{K}\) and \(1300 \mathrm{K},\) respectively. Assuming both the compressor and the turbine have an isentropic efficiency of 80 percent and the regenerator has an effectiveness of 75 percent and using variable specific heats, determine ( \(a\) ) the back work ratio and the net work output, \((b)\) the thermal efficiency, and \((c)\) the secondlaw efficiency of the cycle. Also determine ( \(d\) ) the exergies at the exits of the combustion chamber (state 6 ) and the regenerator (state 10 ) (See Fig. \(9-43\) in the text).
A turbojet is flying with a velocity of \(900 \mathrm{ft} / \mathrm{s}\) at an altitude of \(20,000 \mathrm{ft}\), where the ambient conditions are 7 psia and \(10^{\circ} \mathrm{F}\). The pressure ratio across the compressor is \(13,\) and the temperature at the turbine inlet is 2400 R. Assuming ideal operation for all components and constant specific heats for air at room temperature, determine ( \(a\) ) the pressure at the turbine exit, \((b)\) the velocity of the exhaust gases, and \((c)\) the propulsive efficiency.
Consider a gas turbine that has a pressure ratio of 6 and operates on the Brayton cycle with regeneration between the temperature limits of 20 and \(900^{\circ} \mathrm{C}\). If the specific heat ratio of the working fluid is \(1.3,\) the highest thermal efficiency this gas turbine can have is \((a) 38\) percent (b) 46 percent \((c) 62\) percent \((d) 58\) percent \((e) 97\) percent
What do you think about this solution?
We value your feedback to improve our textbook solutions.