Chapter 9: Problem 24
Are the processes that make up the Otto cycle analyzed as closed-system or steady-flow processes? Why?
Chapter 9: Problem 24
Are the processes that make up the Otto cycle analyzed as closed-system or steady-flow processes? Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeAn aircraft engine operates on a simple ideal Brayton cycle with a pressure ratio of \(10 .\) Heat is added to the cycle at a rate of \(500 \mathrm{kW} ;\) air passes through the engine at a rate of \(1 \mathrm{kg} / \mathrm{s} ;\) and the air at the beginning of the compression is at \(70 \mathrm{kPa}\) and \(0^{\circ} \mathrm{C}\). Determine the power produced by this engine and its thermal efficiency. Use constant specific heats at room temperature.
Helium is used as the working fluid in a Brayton cycle with regeneration. The pressure ratio of the cycle is 8 the compressor inlet temperature is \(300 \mathrm{K},\) and the turbine inlet temperature is \(1800 \mathrm{K}\). The effectiveness of the regenerator is 75 percent. Determine the thermal efficiency and the required mass flow rate of helium for a net power output of \(60 \mathrm{MW},\) assuming both the compressor and the turbine have an isentropic efficiency of \((a) 100\) percent and \((b) 80\) percent.
An Otto cycle with a compression ratio of 10.5 begins its compression at \(90 \mathrm{kPa}\) and \(35^{\circ} \mathrm{C}\). The maximum cycle temperature is \(1000^{\circ} \mathrm{C}\). Utilizing air-standard assumptions, determine the thermal efficiency of this cycle using (a) constant specific heats at room temperature and (b) variable specific heats.
The idea of using gas turbines to power automobiles was conceived in the 1930 s, and considerable research was done in the \(1940 \mathrm{s}\) and \(1950 \mathrm{s}\) to develop automotive gas turbines by major automobile manufacturers such as the Chrysler and Ford corporations in the United States and Rover in the United Kingdom. The world's first gasturbine-powered automobile, the 200 -hp Rover Jet \(1,\) was built in 1950 in the United Kingdom. This was followed by the production of the Plymouth Sport Coupe by Chrysler in 1954 under the leadership of G. J. Huebner. Several hundred gas- turbine-powered Plymouth cars were built in the early 1960 s for demonstration purposes and were loaned to a select group of people to gather field experience. The users had no complaints other than slow acceleration. But the cars were never mass-produced because of the high production (especially material) costs and the failure to satisfy the provisions of the 1966 Clean Air Act. A gas-turbine-powered Plymouth car built in 1960 had a turbine inlet temperature of \(1700^{\circ} \mathrm{F}\), a pressure ratio of \(4,\) and a regenerator effectiveness of \(0.9 .\) Using isentropic efficiencies of 80 percent for both the compressor and the turbine, determine the thermal efficiency of this car. Also, determine the mass flow rate of air for a net power output of 130 hp. Assume the ambient air to be at \(510 \mathrm{R}\) and 14.5 psia.
Write an essay on the most recent developments on the two-stroke engines, and find out when we might be seeing cars powered by two-stroke engines in the market. Why do the major car manufacturers have a renewed interest in two- stroke engines?
What do you think about this solution?
We value your feedback to improve our textbook solutions.