Chapter 9: Problem 2
What is the difference between air-standard assumptions and the cold-air- standard assumptions?
Chapter 9: Problem 2
What is the difference between air-standard assumptions and the cold-air- standard assumptions?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn \(1903,\) Aegidius Elling of Norway designed and built an 11 -hp gas turbine that used steam injection between the combustion chamber and the turbine to cool the combustion gases to a safe temperature for the materials available at the time. Currently there are several gas-turbine power plants that use steam injection to augment power and improve thermal efficiency. For example, the thermal efficiency of the General Electric LM5000 gas turbine is reported to increase from 35.8 percent in simple-cycle operation to 43 percent when steam injection is used. Explain why steam injection increases the power output and the efficiency of gas turbines. Also, explain how you would obtain the steam.
Using EES (or other) software, determine the effect of the number of compression and expansion stages on the thermal efficiency of an ideal regenerative Brayton cycle with multistage compression and expansion. Assume that the overall pressure ratio of the cycle is \(18,\) and the air enters each stage of the compressor at \(300 \mathrm{K}\) and each stage of the turbine at \(1200 \mathrm{K}\). Using constant specific heats for air at room temperature, determine the thermal efficiency of the cycle by varying the number of stages from 1 to 22 in increments of 3. Plot the thermal efficiency versus the number of stages. Compare your results to the efficiency of an Ericsson cycle operating between the same temperature limits.
For a specified compression ratio, is a diesel or gasoline engine more efficient?
In an ideal Otto cycle, air is compressed from \(1.20 \mathrm{kg} / \mathrm{m}^{3}\) and 2.2 to \(0.26 \mathrm{L},\) and the net work output of the cycle is \(440 \mathrm{kJ} / \mathrm{kg} .\) The mean effective pressure (MEP) for this cycle is \((a) 612 \mathrm{kPa}\) \((b) 599 \mathrm{kPa}\) \((c) 528 \mathrm{kPa}\) \((d) 416 \mathrm{kPa}\) \((e) 367 \mathrm{kPa}\)
A simple ideal Brayton cycle is modified to incorporate multistage compression with intercooling, multistage expansion with reheating, and regeneration without changing the pressure limits of the cycle. As a result of these modifications, (a) Does the net work output increase, decrease, or remain the same? (b) Does the back work ratio increase, decrease, or remain the same? \((c) \quad\) Does the thermal efficiency increase, decrease, or remain the same? (d) Does the heat rejected increase, decrease, or remain the same?
What do you think about this solution?
We value your feedback to improve our textbook solutions.