Chapter 9: Problem 1
What are the air-standard assumptions?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 9: Problem 1
What are the air-standard assumptions?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeA turbojet is flying with a velocity of \(900 \mathrm{ft} / \mathrm{s}\) at an altitude of \(20,000 \mathrm{ft}\), where the ambient conditions are 7 psia and \(10^{\circ} \mathrm{F}\). The pressure ratio across the compressor is \(13,\) and the temperature at the turbine inlet is 2400 R. Assuming ideal operation for all components and constant specific heats for air at room temperature, determine ( \(a\) ) the pressure at the turbine exit, \((b)\) the velocity of the exhaust gases, and \((c)\) the propulsive efficiency.
Consider the ideal regenerative Brayton cycle. Determine the pressure ratio that maximizes the thermal efficiency of the cycle and compare this value with the pressure ratio that maximizes the cycle net work. For the same maximumto- minimum temperature ratios, explain why the pressure ratio for maximum efficiency is less than the pressure ratio for maximum work.
Somebody claims that at very high pressure ratios, the use of regeneration actually decreases the thermal efficiency of a gas-turbine engine. Is there any truth in this claim? Explain.
In an ideal Brayton cycle, air is compressed from \(100 \mathrm{kPa}\) and \(25^{\circ} \mathrm{C}\) to \(1 \mathrm{MPa}\), and then heated to \(927^{\circ} \mathrm{C}\) before entering the turbine. Under cold-air-standard conditions, the air temperature at the turbine exit is \((a) 349^{\circ} \mathrm{C}\) (b) \(426^{\circ} \mathrm{C}\) \((c) 622^{\circ} \mathrm{C}\) \((d) 733^{\circ} \mathrm{C}\) \((e) 825^{\circ} \mathrm{C}\)
What is propulsive efficiency? How is it determined?
What do you think about this solution?
We value your feedback to improve our textbook solutions.