Chapter 8: Problem 1
What final state will maximize the work output of a device?
Chapter 8: Problem 1
What final state will maximize the work output of a device?
All the tools & learning materials you need for study success - in one app.
Get started for freeTwo constant-pressure devices, each filled with \(30 \mathrm{kg}\) of air, have temperatures of \(900 \mathrm{K}\) and \(300 \mathrm{K}\). A heat engine placed between the two devices extracts heat from the high-temperature device, produces work, and rejects heat to the low-temperature device. Determine the maximum work that can be produced by the heat engine and the final temperatures of the devices. Assume constant specific heats at room temperature.
Steamexpands in a turbine steadily at arate of $$18,000 \mathrm{kg} / \mathrm{h}$$ entering at \(7 \mathrm{MPa}\) and \(600^{\circ} \mathrm{C}\) and leaving at \(50 \mathrm{kPa}\) as saturated vapor. Assuming the surroundings to be at \(100 \mathrm{kPa}\) and \(25^{\circ} \mathrm{C},\) determine \((a)\) the power potential of the steam at the inlet conditions and \((b)\) the power output of the turbine if there were no irreversibilities present.
Argon gas enters an adiabatic compressor at \(120 \mathrm{kPa}\) and \(30^{\circ} \mathrm{C}\) with a velocity of \(20 \mathrm{m} / \mathrm{s}\) and exits at \(1.2 \mathrm{MPa}\) \(530^{\circ} \mathrm{C},\) and \(80 \mathrm{m} / \mathrm{s}\). The inlet area of the compressor is \(130 \mathrm{cm}^{2} .\) Assuming the surroundings to be at \(25^{\circ} \mathrm{C}\), determine the reversible power input and exergy destroyed.
Steam is to be condensed in the condenser of a steam power plant at a temperature of \(50^{\circ} \mathrm{C}\) with cooling water from a nearby lake that enters the tubes of the condenser at \(12^{\circ} \mathrm{C}\) at a rate of \(240 \mathrm{kg} / \mathrm{s}\) and leaves at \(20^{\circ} \mathrm{C}\). Assuming the condenser to be perfectly insulated, determine (a) the rate of condensation of the steam and ( \(b\) ) the rate of energy destruction in the condenser.
Refrigerant-134a at \(1 \mathrm{MPa}\) and \(100^{\circ} \mathrm{C}\) is throttled to a pressure of 0.8 MPa. Determine the reversible work and exergy destroyed during this throttling process. Assume the surroundings to be at \(30^{\circ} \mathrm{C}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.