Chapter 7: Problem 223
The temperature of an ideal gas having constant specific heats is given as a function of specific entropy and specific volume as \(T(s, v)=A v^{1-k} \exp \left(s / c_{v}\right)\) where \(A\) is a constant. For a reversible, constant volume process, find the expression for heat transfer per unit mass as a function of \(c_{v}\) and \(T\) using \(Q=\int T d S .\) Compare this result with that obtained by applying the first law to a closed system undergoing a constant volume process.