Chapter 7: Problem 193
Refrigerant-134a at \(140 \mathrm{kPa}\) and \(-10^{\circ} \mathrm{C}\) is compressed by an adiabatic \(1.3-\mathrm{kW}\) compressor to an exit state of \(700 \mathrm{kPa}\) and \(60^{\circ} \mathrm{C}\). Neglecting the changes in kinetic and potential energies, determine ( \(a\) ) the isentropic efficiency of the compressor, \((b)\) the volume flow rate of the refrigerant at the compressor inlet, in \(\mathrm{L} / \mathrm{min}\), and \((c)\) the maximum volume flow rate at the inlet conditions that this adiabatic \(1.3-\mathrm{kW}\) compressor can handle without violating the second law.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.