Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

During a heat transfer process, the entropy of a system (always, sometimes, never) increases.

Short Answer

Expert verified
Answer: Sometimes.

Step by step solution

01

1. Understanding Entropy

Entropy is a thermodynamic property that measures the amount of thermal energy unavailable to do useful work in a system. It is often associated with the randomness or chaos in a system. The second law of thermodynamics states that the total entropy of an isolated system can only increase over time or, in the case of a reversible process, remain constant.
02

2. Reversible and Irreversible Processes

In thermodynamics, processes can be classified as reversible or irreversible. A reversible process is an ideal process, which is assumed to occur very slowly and infinitely close to equilibrium. In a reversible process, the entropy of a system remains constant, and no energy is lost as waste. However, real-life processes are always irreversible, as they involve some mechanical, heat, or viscous losses. In an irreversible process, the entropy of a system increases.
03

3. Entropy Change During Heat Transfer

During a heat transfer process, the entropy change depends on the nature of the process. If it is a reversible process, the entropy of the system remains constant as the heat is transferred evenly, and no energy is lost to the surroundings. However, in most real-life situations, the processes are irreversible, and energy is lost as waste due to mechanical, heat, or viscous losses. In this case, the entropy of the system increases during the heat transfer process. So, based on the above discussion:
04

Conclusion

The entropy of a system increases "sometimes" during a heat transfer process. It remains constant in the ideal, reversible processes, but increases in real-life, irreversible processes.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the turbocharger of an internal combustion engine. The exhaust gases enter the turbine at \(450^{\circ} \mathrm{C}\) at a rate of \(0.02 \mathrm{kg} / \mathrm{s}\) and leave at \(400^{\circ} \mathrm{C}\). Air enters the compressor at \(70^{\circ} \mathrm{C}\) and \(95 \mathrm{kPa}\) at a rate of \(0.018 \mathrm{kg} / \mathrm{s}\) and leaves at 135 kPa. The mechanical efficiency between the turbine and the compressor is 95 percent ( 5 percent of turbine work is lost during its transmission to the compressor). Using air properties for the exhaust gases, determine ( \(a\) ) the air temperature at the compressor exit and ( \(b\) ) the isentropic efficiency of the compressor.

Water enters a pump steadily at \(100 \mathrm{kPa}\) at a rate of \(35 \mathrm{L} / \mathrm{s}\) and leaves at \(800 \mathrm{kPa} .\) The flow velocities at the inlet and the exit are the same, but the pump exit where the discharge pressure is measured is \(6.1 \mathrm{m}\) above the inlet section. The minimum power input to the pump is \((a) 34 \mathrm{kW}\) \((b) 22 \mathrm{kW}\) \((c) 27 \mathrm{kW}\) \((d) 52 \mathrm{kW}\) \((e) 44 \mathrm{kW}\)

The compressors of a production facility maintain the compressed-air lines at a (gage) pressure of \(700 \mathrm{kPa}\) at \(1400-\mathrm{m}\) elevation, where the atmospheric pressure is \(85.6 \mathrm{kPa}\). The average temperature of air is \(15^{\circ} \mathrm{C}\) at the compressor inlet and \(25^{\circ} \mathrm{C}\) in the compressed-air lines. The facility operates \(4200 \mathrm{h} / \mathrm{yr},\) and the average price of electricity is \(\$ 0.12 / \mathrm{kWh}\). Taking the compressor efficiency to be 0.8 the motor efficiency to be \(0.93,\) and the discharge coefficient to be \(0.65,\) determine the energy and money saved per year by sealing a leak equivalent to a 3 -mm-diameter hole on the compressed-air line.

Combustion gases with a specific heat ratio of 1.3 enter an adiabatic nozzle steadily at \(800^{\circ} \mathrm{C}\) and \(800 \mathrm{kPa}\) with a low velocity, and exit at a pressure of 85 kPa. The lowest possible temperature of combustion gases at the nozzle exit is \((a) 43^{\circ} \mathrm{C}\) \((b) 237^{\circ} \mathrm{C}\) \((c) 367^{\circ} \mathrm{C}\) \((d) 477^{\circ} \mathrm{C}\) \((e) 640^{\circ} \mathrm{C}\)

Helium gas is compressed from \(27^{\circ} \mathrm{C}\) and \(3.50 \mathrm{m}^{3} / \mathrm{kg}\) to \(0.775 \mathrm{m}^{3} / \mathrm{kg}\) in a reversible and adiabatic manner. The temperature of helium after compression is \((a) 74^{\circ} \mathrm{C}\) \((b) 122^{\circ} \mathrm{C}\) \((c) 547^{\circ} \mathrm{C}\) \((d) 709^{\circ} \mathrm{C}\) \((e) 1082^{\circ} \mathrm{C}\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free