Chapter 7: Problem 143
A well-insulated, thin-walled, double-pipe, counter-flow heat exchanger is to be used to cool oil \(\left(c_{p}=\right.\) \(\left.2.20 \mathrm{kJ} / \mathrm{kg} \cdot^{\circ} \mathrm{C}\right)\) from \(150^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\) at a rate of \(2 \mathrm{kg} / \mathrm{s}\) by water \(\left(c_{p}=4.18 \mathrm{kJ} / \mathrm{kg} \cdot^{\circ} \mathrm{C}\right)\) that enters at \(22^{\circ} \mathrm{C}\) at a rate of \(1.5 \mathrm{kg} / \mathrm{s}\) Determine \((a)\) the rate of heat transfer and \((b)\) the rate of entropy generation in the heat exchanger.